ANTI-SKIN AGING EFFECT OF Centella asiatica AND Cosmos caudatus EXTRACTS

KU FATIN NURDIANA BINTI KU FAIROS NIZAM

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2022

This Final Year Project Report entitled "Anti-Skin Aging Effect of *Centella Asiatica* And *Cosmos Caudatus* Extract" was submitted by Ku Fatin Nurdiana Binti Ku Fairos Nizam in partial fulfilment of the requirement for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences and was approved by

Dr Ahmad Suhail Bin Khazali Supervisor Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Sir Syukri Bin Noor Azman Course Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis Zalina Binti Zainal Abidin Program Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Date:

ABSTRACT

ANTI-SKIN AGING EFFECT OF CENTELLA ASIATICA AND COSMOS CAUDATUS EXTRACT

Many scientific studies have demonstrated the anti-skin aging effects of Centella asiatica and Cosmos caudatus extracts. Skin aging is defined as the changes in the skin, structurally and functionally, due to aging. Reactive oxygen species (ROS) is central in skin aging and we hypothesized that neutralizing ROS may be the key in combating aging. Natural-based compounds are becoming essential in skincare industry as chemical or synthetic compounds may cause adverse effects. Centella asiatica, which has a lot of bioactive compounds such as flavonoids and madecassoside, can be utilized as an antiaging ingredient to moisturize smooth, and soothe the skin. Similarly, Cosmos *caudatus* also acts as an antiaging agent as it contains several bioactive compounds that are potent antioxidants such as proanthocyanidins. Due to their high antioxidant activities, it was hypothesized that these extracts possess antiaging activity. In these experiments, Centella asiatica and Cosmos caudatus extracts were tested for diphenylpicrylhydrazyl (DPPH) radical scavenging activity and for tyrosinase inhibition action. Centella asiatica extract exhibited 62.00% of DPPH radical scavenging activity at 0.15 mg/ml while Cosmos caudatus extract exhibited 69.72% of DPPH radical scavenging activity at 0.15 mg/ml. IC₅₀ value of *Cosmos caudatus* activity was determined to be 0.018 mg/ml and the IC₅₀ value of *Centella asiatica* at 0.012 mg/ml. *Centella asiatica* inhibited 29.97% activity of tyrosinase activity whereas Cosmos caudatus inhibited 40.91% tyrosinase activity. Both extracts showed significant antioxidant and antityrosinase activities. Based on these findings, the hypothesis is accepted as both extracts exhibit DPPH scavenging activity and anti-tyrosinase activity. However, the causal relationship between these two activities still requires further studies. Nonetheless, both extracts show promising results and may be further developed into safe and efficacious skincare products.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	vii
LIST OF SYMBOLS	viii
LIST OF ABBREVIATIONS	ix
CHAPTER 1 INTRODUCTION	
1.1 Background of the study	1
1.2 Problem statements	3
1.3 Significance of the study	5
1.4 Research questions	6
1.5 Objective of the study	6
CHAPTER 2 LITERATURE REVIEW	7
2.1 Introduction to human skin 2.1.1 ECM in the skin	7 10
	10
2.2 Skin Aging2.2.1 Molecular Mechanism of Skin Aging	14
	10 19
2.3 Enzymes in skin	20
2.3.1 Elastase	20 20
2.3.2 Collagenase	20 21
2.3.3 Tyrosinase	21
2.3.4 Hyaluronidase	
2.4 Skin Aging in Malaysia	22
2.4.1 Cosmetic industry in Malaysia	25
2.4.2 Chemical in skincare products	26
2.5 Plants	28
2.5.1 Centella asiatica	28
2.5.2 Cosmos caudatus	30

CHAPTER 3 METHODOLOGY

3.1 Plant material and preparation of extracts	33
3.1.1 Centella asiatica	33

3.1.2 Cosmos caudatus	34
3.2 1,1-Diphenyl-picrylhydrazyl (DPPH) radical scavenging	34
assay 3.3 Tyrosinase inhibition assay 3.4 Statistical analysis	35 36

CHAPTER 4 RESULT AND DISCUSSION

4.1 Result	37
4.1.1 1,1-Diphenyl-picrylhydrazyl (DPPH) Radical	37
Scavenging Assay	
4.1.2 Tyrosinase Inhibition Assay	40
4.2 Discussion	41
4.2.1 1,1-Diphenyl-picrylhydrazyl (DPPH) Radical	41
Scavenging Assay	
4.2.2 Tyrosinase Inhibition Assay	43

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion	44
5.2 Recommendation	45
5.2.1 The extraction methods.	45
5.2.2 The extraction processes	46
5.2.3 Aging-related enzymes assays	46

CITED REFERENCES	47
APPENDICES	54
CURRICULUM VITAE	55
GANTT CHART	57