IDENTIFICATION OF *Escherichia coli* FROM CHICKEN SAMPLES USING CULTURE-BASED METHOD AND BIOINFORMATIVE TOOLS FOR *hlyF* GENE

PUTERI IMEIN SUFIA BINTI MOHD ADLY

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCES, UNIVERSITI TEKNOLOGI MARA

AUGUST 2022

UiTM 2022

IDENTIFICATION OF Escherichia coli FROM CHICKEN SAMPLES USING CULTURE-BASED METHOD AND BIOINFORMATIVE TOOLS FOR hlyF GENE

PUTERI IMEIN SUFIA BINTI MOHD ADLY

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences, Universiti Teknologi MARA

AUGUST 2022

This Final Year Project Report entitled "Identification of *Escherichia coli* from Chicken Samples Using Culture-Based Method and Bioinformative Tools for *hlyF* Gene" was submitted by Puteri Imein Sufia binti Mohd Adly in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Dr. Roziana binti Mohamed Hanaphi Supervisor B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Mr Syukri bin Noor Azman Project Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Mrs Zalina binti Zainal Abidin Programme Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

ABSTRACT

IDENTIFICATION OF *Escherichia coli* USING CULTURE-BASED METHOD AND BIOINFORMATIVE TOOLS FOR *hlyF* GENE

Colibacillosis is a disease found in chickens that houses the zoonotic avian pathogenic Escherichia coli (APEC). Unhealthy chickens will exhibit signs such as no appetite, more tired and the anus being dark red with mostly white or yellow faeces. This is a serious issue that is arising in the poultry industry because it affects the well-beings of chicken consumers. This study aims to isolate APEC from unhealthy-living chicken samples using culture-based method, design specific primers of *hlyF* gene from genomic sequence of APEC and amplify the gene using in-silico PCR. Therefore, this study was involved sampling 30 unhealthy-living chickens via cloacal swabbing. Culture-based method was done to identify the presence of E. coli in the sample. The test includes culture of differential agar of MacConkey, malonate test to differentiate among Enterobacteriaceae strains and Gram staining for morphology identification. A total of 19 positive samples were obtained and further kept in 20% glycerol stock for upcoming use. For the molecular based detection, DNA extraction was performed on the 19 positive samples. The gene of interest, *hlyF*, was assessed using bioinformative tools such as BLASTn, FASTA, ClustalW and in-silico PCR. A set of primers were design according to Primer3 with a size of 228 bp and contained 40% and 45% of GC content for both forward and reverse primers respectively. In-silico PCR was used to test the capability of the primers to amplify specifically to the target gene of *hlyF*. In conclusion, this study managed to identify 19 positive samples infected by APEC and successfully designed primers for virulent gene hlyF. Completion of this study will benefit the poultry industry by minimizing the chances of APEC infections by producing a rapid detection in order to control infection, thus preventing economy loss and recession.

Keywords: *E. coli, hlyF* gene, APEC, chicken, poultry, zoonotic, primers, PCR, gel electrophoresis, bioinformative tools

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGMENTS	V
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xii

CHAPTER 1 INTRODUCTION

1.1	Background of study and problem statement	1
1.2	Significance of study	3
1.3	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	The general information of <i>E. coli</i>	4
	2.1.1 The phylogenetic of <i>E. coli</i>	6
	2.1.2 The phylogenetic analysis of <i>E. coli</i>	7
2.2	The pathogenicity island of <i>E. coli</i>	7
2.3	Avian pathogenic E. coli (APEC)	
	2.3.1 The virulence and pathogenesis of APEC	11
	2.3.2 The toxins	13
	2.3.2 The mode of mechanism transmission of APEC	14
	2.3.4 The diseases associated with APEC	15
2.4	The economy loss due to APEC	17

CHAPTER 3 METHODOLOGY

3.1	Samp	mpling and isolation of <i>E. coli</i>		
3.2	Isolati	Isolation		
	3.2.1	Preparation of MacConkey and nutrient agar	20	
	3.2.2	Preparation of nutrient and malonate broth	21	
	3.2.3	Preparation of <i>E. coli</i> cultures	22	
	3.2.4	Streaking on MacConkey and nutrient agar	22	
	3.2.5	Gram staining	23	
3.3	Biochemical test		24	