CONDUCTIVITY OF CARBON BLACK (CB) AND GRAPHITE (G) ADDITION IN SILICONE-BASED ELECTRICALLY CONDUCTIVE ADHESIVES (ECAs)

NUR ELISSA BINTI AHMAD IZUDDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

FEBRUARY 2024

This Final Year Project Report entitled "Conductivity of Carbon Black (CB) and Graphite (G) Addition in Silicone-based Electrically Conductive Adhesives (ECAs)" was submitted by Nur Elissa binti Ahmad Izuddin in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Zuliahani binti Ahmad Supervisor B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia binti Ali Project Coordinator B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah binti Kasim Head of Programme B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: 09 February 2024

ABSTRACT

CONDUCTIVITY OF CARBON BLACK (CB) AND GRAPHITE (GR) ADDITION IN SILICONE-BASED ELECTRICALLY CONDUCTIVE ADHESIVES (ECAs)

Electrically conductive adhesives (ECAs) have raised a massive interest among researchers to replace traditional Tin-Lead (Sn-Pb) solders especially in electronic manufacturing devices due to its greater attributes than utilizing lead (Pb) which is harmful to human health. In this study, silicone-based ECAs was proposed with the addition of hybrid fillers namely, carbon black (CB) and graphite (G) in which CB and G are both conductive fillers while silicone, specifically polydimethylsiloxane (PDMS) is used as the polymer matrix. By incorporating wet-ball milling method to achieve optimum dispersion of the fillers in the matrix and adopting film casting technique to form thin films beforehand, then the optimum ratio of CB and G (1:2, 2:1, 2:2, 1:3 and 3:1 ratio) on its conductivity properties of CB/G/PDMS composite via multimeter and 4-point probe was identified and the CB/G/PDMS films were characterized via ATR-FTIR and UV-Visible spectroscopy. It was found out that 1:3 ratio had the lowest resistivity of 1.615×10^3 with the optimum conductivity value $6.19 \times 10^{-4} \,\Omega \cdot \text{cm}^{-1}$ while 3:1 ratio had the second lowest conductivity at $5.49 \times 10^{-4} \Omega \cdot cm^{-1}$ with a resistivity of $1.82 \times 10^3 \,\Omega$ cm via multimeter testing. From four-point probe analysis, 1:3 ratio had the optimum conductivity value of 4.35×10^{-6} S/m while the lowest conductivity value belongs to 2:1 at 3.69×10^{-6} S/m. ATR-FTIR was also used to determine the functional groups contained within CB, G and PDMS. CB can be seen having peaks around 2700 -3000 cm⁻¹, denoting the C-H stretching, PDMS at peaks of 1000 - 1100 cm⁻¹ which corresponds to Si-O-Si stretching, 1250 - 1260 cm⁻¹ of Si-CH₃ stretching and 800 -850 cm⁻¹ for Si-C stretching. As for graphite, the G band of graphitic carbon could be spotted at around 1580 – 1600 cm⁻¹. UV-Visible spectroscopy spectra depicted the maximum wavelength values for samples ranging from 293 to 302 nm, showing π - π^* transition. This study is significant to observe the effects of ball milling process and the influences of incorporation of CB and G in improving the electrical conductivity of a silicone-based ECAs.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGEMENTS	iv
TABLE OF CONTENTS		v
LIST	OF TABLES	vii
LIST	OF FIGURES	viii
LIST	OF SYMBOLS	ix
LIST	OF ABBREVIATIONS	X
ABS	ГКАСТ	ii
ABS	FRAK	iii
CHA	PTER 1 INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	7
1.3	Research questions	8
1.4	Objectives of study	9
СНА	PTER 2 LITERATURE REVIEW	10
2.1	Electrically Conductive Adhesives (ECAs)	10
2.1	2.1.1 Categories of Electrically Conductive Adhesives (ECAs)	13
2.2	Polymeric Materials for Electrically Conductive Adhesives (ECAs)	17
2.3	Silicone-based Electrically Conductive Adhesives	20
2.4	Conductive Fillers for Electrically Conductive Adhesives (ECAs)	22
2.5	Hybridized Form of Carbon Black (CB) and Graphite (G) for	
	ECAs	26
2.6	Mixing Method	30
	2.6.1 Ball milling	34
2.7	Casting Technique	37
	2.7.1 Film casting method	40
СНА	PTER 3 : METHODOLOGY	47
3.1	Materials and Chemicals	47
3.2	Instrument and Equipment	48
3.3	Experimental work	49
	3.3.1 Formulation of Silicone-based ECAs with Carbon Black and Graphite	49

3.4	3.3.2 Preparation of Carbon Black-Graphite filled Silicone film Characterization and Testing	50 52
5.1	3.4.1 Characterization study	52
	3.4.2 Conductivity properties	54
CHAF	TER 4 RESULTS AND DISCUSSION	56
CHAP	TER 5 CONCLUSION AND RECOMMENDATIONS	81
CITE	D REFERENCES	83
APPE	NDICES	95
CURF	RICULUM VITAE	96