TREATED SUGARCANE BAGASSE FIBER REINFORCED UNSATURATED POLYESTER COMPOSITE: THE IMPACT OF FIBER SIZES ON THE MECHANICAL AND PHYSICAL PROPERTIES

MU'IZZ MUHAIMIN BIN AHMAD SUBRI

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

FEBRUARY 2024

TREATED SUGARCANE BAGASSE FIBER REINFORCED UNSATURATED POLYESTER COMPOSITE: THE IMPACT OF FIBER SIZES ON THE MECHANICAL AND PHYSICAL PROPERTIES

MU'IZZ MUHAIMIN BIN AHMAD SUBRI

Final Year Project Proposal Submitted in
Partial Fulfilment of the Requirements for the
Degree of Bachelor of Science (Hons.) Applied Chemistry
in the Faculty of Applied Sciences
Universiti Teknologi MARA

FEBRUARY 2024

This Final Year Project Report entitled "Treated sugarcane bagasse fiber reinforced unsaturated polyester composite: The impact of fiber sizes on the mechanical and physical properties" was submitted by Mu'izz Muhaimin Bin Ahmad Subri in partial fulfillment of the requirement for the Degree of Bachelor of Science (Hons) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

Madam Siti Noorashikin binti Jamal Supervisor B. Sc. (Hons.) Polymer Technology Faculty of Applied Science Universiti Teknologi Mara 02600 Arau

Perlis

Dr. Siti Nurlia Binti Ali Project Coordinator B. Sc. (Hons) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah Binti Kasim Head of Programme B. Sc. (Hons) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: February 2024

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
TABLE OF CONTENTS	ii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABREVIATIONS	X
ABSTRACT	xi
ABSTRAK	xii
CHAPTER 1 INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	4
1.3 Significance of Study	5
1.4 Objectives of Study	5
1.5 Research Question	6
CHAPTER 2 LITERATURE REVIEW	
2.1 Composite	7
2.1.1 Properties of Composite	8
2.1.2 Applications of Composite	10
2.2 Filler	12
2.2.1 Natural Filler/Fiber	13
2.2.2 Advantages of natural fibers	15
2.2.3 Sugarcane Bagasse Fiber (SBF)	17
2.2.4 Chemical Composition	18
2.2.5 Tensile Properties	20
2.2.6 Fiber Length	22
2.3 Thermoset	24

ABSTRACT

TREATED SUGARCANE BAGASSE FIBER REINFORCED UNSATURATED POLYESTER COMPOSITE: THE IMPACT OF FIBER SIZES ON THE MECHANICAL AND PHYSICAL PROPERTIES

The mechanical and physical properties of different sizes of treated sugarcane bagasse fiber (SBF) reinforced with unsaturated polyester resin (UPR) as a green alternative to synthetic fiber were successfully studied. The characterization of untreated and treated bagasse fiber was done using Fourier Transform Infrared Spectroscopy (FTIR). FTIR results in this study show that 5% alkali treatment removed impurities from the fiber surface. This is proved by the disappearance of peaks related to hemicellulose and lignin before and after surface treatment. The hand lay-up method was used for the fabrication of UPR/SBF composites using five different filler formulations (0g, 2g, 4g, 6 g, and 8g) for short and powdered fiber. The constructed composites were tested for their mechanical (tensile test and impact test) and physical (water absorption test) properties. The highest tensile strength recorded in this study is in a 2g sample of UPR/short SBF composite at 32.11 MPa. The highest Young's modulus recorded in this study is from a 4g sample of UPR/short SBF composite at 1155.61 MPa. The elongation at break test shows a decreasing trend with an increasing fiber loading for both short and powder SBF composites. An 8g sample of UPR/powder SBF composite recorded the lowest value for elongation at the break test at 3.3%. The impact strength of the 8g sample for the UPR/powder SBF composite recorded the highest value at 7.42 J/M. The water absorption test shows that both short and powder SBF composites absorb an increasing amount of water with increasing fiber loading. However, UPR/short SBF composites have a higher water absorption value compared to UPR/powder SBF composites at the same amount of fiber loading.