

DETERMINATION OF PMMA BLOCK SEMICONDUCTOR

NUR DZAINA BINTI ZAIDEL

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

APRIL 2009

This Final Year Project Report entitle "DETERMINATION OF PMMA BLOCK SEMICONDUCTOR" was submitted by Nur Dzaina Binti Zaidel, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied sciences, and was approved by

Dr Jamizz Bt Abdul Latiff Supervisor B. Sc. (Hons) Chemistry Faculty of Applied Science University Teknology MARA 40450 Shah Alam Selangor

Dr. Faniza & Abdul Latiff Project Coordinator B. Sc. (Hons) Chemistry Faculty of Applied Science Universiti Teknologi MARA 40450 Shah Alam Selangor

PM Dr/Faizah Md Salleh Head of Programme B. Sc. (Hons) Chemistry Faculty of Applied Science Universiti Teknologi MARA 40450 Shah Alam Selangor

7 MAY 2009 Date:

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT	111
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Type of radiation sources	1
1.2	Effects of Radiation on the Polymer	3
1.3	Limitation of high irradiation	6
1.4	Problem Statement	7
1.5	Objective	8
1.6	Scope of work	9

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	10
2.2	Poly methyl metacrylate(PMMA)	11
2.3	Semiconductor	12

CHAPTER 3 METHODOLOGY

3.1	Radia	tion of Poly(methylmethacryate) block	13
3.2	Mater	ial characterization	
	3.2.1	Fourier Transform Infrared (FTIR) Analysis	13
	3.2.2	Differential Scanning Calorimetry (DSC) Analysis	14
	3.2.3	Thermogravimetric analysis (TGA)	15
	3.2.4	Optical microscope	16
	3.2.5	Determination of the type of Semiconductor	17
	3.2.6	Determination of the band gap of irradiated	18
		PMMA block	

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	FTIR analysis for irradiated PMMA block		
4.2	Thermal analysis study on the irradiated PMMA	21	
	block		
4.3	Surface morphology study on irradiated PMMA	24	
	block		
4.4	Determination of type of PMMA semiconductor by	25	
	hot probe measurement		
4.5	Determination of the Energy band gap of PMMA	25	
	Semiconductor		
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS			
		27	
CITED REFERENCES		28	
CUR	RICULUM VITAE	30	

ABSTRACT

DETERMINATION OF POLY METHYL MATACRYLATE (PMMA) BLOCK SEMICONDUCTOR

In this study, the Poly methyl metacrylate (PMMA) block was irradiated using Electron beam accelerator at 50kGY. The band gap energy obtained from this irradiated PMMA sample was 3.4450 eV which fall in the range of most common semiconductor. From the hot probe measurement it was found that this irradiated PMMA was n-type semiconductor. Therefore it was can be concluded that the charge carries in this irradiated system was electrons. These electrons were release from the breaking of –CH bond of the methylene group –CH₂, and the CH₃ group of PMMA structure that had been confirmed from the Fourier Transform Infrared (FTIR) analysis. The decreased in the glass transition temperature, Tg and the decomposition temperature of the irradiated PMMA system observed from the Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) thermograms supported the occurrence of bond breaking.