SYNTHESSES AND METHYLATIONS OF 2,3-DIOXOPYRROLIDINES WITH DIFFERENT AMINES

ANIS RAENANA BT ABD RASID

BACHELOR OF SCIENCE (Hons.)
CHEMISTRY
FACULTY OF APPLIED SCIENCES
UNIVERSITI TEKNOLOGI MARA

APRIL 2009
This Final Year Project Report entitled "Syntheses and Methylation of 2,3-Dioxopyrrolidines with different amines" was submitted by Anis Raehana bt Abd Rasid, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Prof. Madya Dr. Zurina Hj Shaameri
Supervisor
B. Sc. (Hons.) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
40450 Shah Alam
Selangor

Dr. Faziza Abdul Latif
Project Coordinator
B. Sc. (Hons.) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
40450 Shah Alam
Selangor

Assoc. Prof. Dr. Faizah Md Salleh
Head of Programme
B. Sc. (Hons.) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
40450 Shah Alam
Selangor

Date: 6 MAY 2009
TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF SCHEME viii
ABSTRACT ix
ABSTRAK x

CHAPTER 1 INTRODUCTION
1.1 Introduction of Pyrrolidine 1
1.2 The scope of study
 1.2.1 One-pot reaction 3
 1.2.2 Alkylation reaction 4
1.3 Significance of study 5
1.4 Objectives of study 5

CHAPTER 2 LITERATURE REVIEW
2.1 Synthesis of 2, 3-dioxopyrrolidines via a multicomponent reaction 6
2.2 One-pot synthesis of substituted product pyrrole 3-phosphonates 8
 from α-cynomethyl-β-ketoester
2.3 Alkylation of Ethyl 2-oxocyclopentanecarboxylate 9

CHAPTER 3 METHODOLOGY
3.1 Material
 3.1.1 Chemical 11
 3.1.2 Instrument for analysis (Nuclear Magnetic Resonance (NMR) 11
 spectroscopy)
3.2 Experimental
 3.2.1 Preparation of ethyl 4-hydroxy-2-(4-methoxuphenyl)-methyl-
 5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate 12
 3.2.2 Preparation of 1-benzyl-4-hydroxy-2-(4-methoxuphenyl)-methyl-
 5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate 13
 3.2.3 Preparation of 2-(4-methoxyphenyl)-1,3-dimethyl-4,5-
 dioxopyrrolidine-3-carboxylate 14
3.2.4 Preparation of 1-benzyl-2-(4-methoxyphenyl)-1,3-dimethyl-4,5-dioxopyrroolidone-3-carboxylic acid

3.3 Synthetic outline for one-pot synthesis and methylation processes

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Syntheses of compound via one-pot reaction

4.2 1H NMR spectroscopic characterization for one-pot reaction product

4.2.1 Compound Ethyl 4-hydroxy-2-(4-methoxyphenyl)-methyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate

4.2.2 Compound 1-benzyl-4-hydroxy-2-(4-methoxyphenyl)-methyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate

4.3 Alkylation of one-pot product

4.4 The mechanism of the alkylation reaction with using methyl iodide as the alkylation agent

4.5 1HNMR Spectroscopic characterization for alkylation reaction product

4.5.1 Compound 2-(4-methoxyphenyl)-1,3-dimethyl-4,5-dioxopyrroolidone-3-carboxylate

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

CITED REFERENCES

CURRICULUM VITAE
ABSTRACT

SYNTHESIS AND ALKYLLATION OF 2,3-DIOXOPYRROLIDINE WITH DIFFERENT AMINE

In this research, sodium diethyl oxalate that has been used as the starting material was reflux together with amine and 4-methoxy benzaldehyde for 30 minutes via one-pot reaction. Two different amines which is benzyl amine and methyl amine were used for the variation of the result. Then, the products forms via one-pot reaction were being alkylated by using methyl iodide as the alkylating agent. The 2,3-dioxopyrrolidine derivatives in ethanol was refluxed with the methyl iodide and potassium carbonate. The expected alkylation was preferred at C4 position on the pyrrolidine ring because the α-hydrogen is more acidic since it is surrounded by the carbonyl carbon and benzene group. But the result obtained through the characterization of 1H NMR spectrum show that there is O-alkylation instead of C-alkylation. The methyl group is attached to the oxygen at C3 position on the pyrrolidine ring system. Chromatography analysis also has been proposed to identify the present of other impurities. On the TLC, several spots were observed represent the major product, some unreacted starting material and impurities product. The desired product has been separated from the others material and product through the column chromatography.