UNIVERSITI TEKNOLOGI MARA

STRIPPING PERFORMANCE OF HOT MIX ASPHALT (HMA) USING POLYMER AND HYDRATED LIME AS ADDITIVES

EKARIZAN SHAFFIE

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Civil Engineering

February 2008
ABSTRACT

Stripping is one of the common type of pavement failure found in asphaltic pavements. Besides high traffic impact stress, climatic factor such as temperature and moisture also have profound effect on the durability of hot mix asphalt (HMA) pavements. The objective of this research is to evaluate and compare the stripping performance of unmodified and rubber-polymer modified binder mixes with and without anti-stripping additives in Superpave mix design (AASHTO TP4) procedure.

The study investigates four different dense graded Superpave HMA mixes. The first mixture was a control specimen that contained no hydrated lime and unmodified binder. The second mixture contained hydrated lime with unmodified binder. The third mixture contained no hydrated lime but with rubber-polymer modified binder and the fourth mixture contained hydrated lime with rubber-polymer modified binder. The hydrated lime was used as anti-stripping additive. The addition of 40-mesh tyre crumbs and polymer Ethylene-Vinyl-Acetate (EVA) into binder was used to prepare rubber-polymer modified binder. The optimum percentage of rubber crumb and EV polymer was selected based on the previous research done by Ibrahim, (2005). The boiling water test, the modified Lottman's test, and the indirect tensile resilient modulus test were used to evaluate the stripping performance in these mixes. This study also documents the effect of different temperature on tensile strength ratio (TSR) and resilient modulus ratio (RMR) on the HMA mixtures. Comparison of the physical conditions such as strength or resilient modulus of the conditioned and unconditioned samples were used as a measure to evaluate the stripping potential in HMA pavement. Statistical analysis was then carried out to evaluate the significance of rubber polymer and hydrated lime on the stripping performance of HMA mix.

Finding from this research work showed that rubber-polymer modified binder mixes were found to exhibit better resistance to moisture damage compared to unmodified binder mixes. The results also showed that the addition of hydrated lime as anti-stripping additive is effective in all mixes, however greater resistance to moisture damage with rubber-polymer modified binder as compared to unmodified binder mixes. In addition, it could be noted that temperature significantly affects the performance of the hot mix asphalt. Statistical analysis of TSR and RMR results show there are significant different for mix with the addition of hydrated lime and demonstrates a higher potential for stripping resistance.
Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree of qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Candidate's Name : EKARIZAN BT. SHAFFIE
Candidate's Signature : ...
Date : ... 27/2/2008
ACKNOWLEDGEMENTS

Firstly and foremost, I would like to express my gratitude to Almighty Allah S.W.T. for giving me the guidance and strength in completing this master thesis with success.

I also would like to extend my greatest thank you to all those who gave me the possibility to complete this thesis. First and foremost, I would like to express my sincere gratitude to my supervisor Associate Prof. Dr. Ir. Mohd Yusof Abd. Rahman for his advice, comments, guidance, support and encouragement during the completion of my study.

Special thanks are dedicated to Associate Prof. Dr. Ir. Zainab Mohamed as my co-supervisor for sharing her ideas and information with me. This work would not have been possible without their utmost capability and intelligence.

Furthermore, I am also indebted to Prof. Mustaque Hussain (Kansas State University), Associate Prof. Dr. Rosli Hainin, Prof. Mohamed Rehan Karim, Associate Prof. Dr. Azemi Samsuri, Associate Prof. Dr. Ismail Atan, Pn. Juraidah Hj. Ahmad whose assistance enable me to complete this project. Their guidance and support have motivated me to complete this project confidently.

I also would like to thank all other parties, those who have involved directly or indirectly in making this research a very great success.

Finally, to my beloved family and friends, especially to my beloved husband Azman Ibrahim whose patient and loves enabled me to complete this work. I owe you all, the heartiest gratitude and thank you for your encouragement, inspiration and support.

Thanks for all the kindness. May the Almighty Allah S.W.T. bless us and be with us all the time.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Background of Study | 1 |
1.2 Problem Statement | 5 |
1.3 Objectives | 6 |
1.4 Hypothesis | 6 |
1.5 Study Approach | 6 |
1.6 Scope of the Study | 8 |
1.7 Significance of the Study | 8 |

CHAPTER 2: LITERATURE REVIEW

2.1 Moisture Susceptibility | 10 |
2.2 Stripping | 11 |
2.3 Moisture-Related Problems | 12 |
2.4 Moisture-Related Distresses | 13 |
 2.4.1 Bleeding, Cracking and Rutting | 13 |
 2.4.2 Ravelling | 14 |
 2.4.3 Localized Failure | 15 |
2.5 Causes of Moisture-Related Distresses | 15 |
 2.5.1 Moisture-Sensitive Aggregates | 15 |