IN-SITU SUPERCritical METHANOL TRANSESTERIFICATION FOR PRODUCTION OF BIODIESEL FROM Jatropha Curcas L. SEEDS

ASNIDA YANTI BT ANI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

October 2010
CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulation of Universiti Teknologi MARA.

Name of Candidate : Asnida Yanti Binti Ani
Candidate's ID No : 2007239334
Programme : Master of Science
Faculty : Applied Sciences
Thesis Title : In-situ supercritical methanol transesterification for production of biodiesel from Jatropha curcas L. seeds.

Signature of Candidate : ...
Date : October 2010
In-situ supercritical methanol transesterification for production of biodiesel from *Jatropha curcas* L. (JCL) seeds was successfully carried out via 1000 ml high-temperature high-pressure batch-wise reactor system in an absence of catalyst. In order to maximize the percent of crude biodiesel and FAMEs yield, four process variables were studied in this experiment, i.e. temperatures (180 to 300 °C), pressure (6 to 18 MPa), reaction time (5 to 35 min) and seeds-to-methanol ratio (1:15 to 1:45) using methanol as a solvent as well as reactant. Response Surface Methodology (RSM) was used to reduce the number of experimental runs required to generate sufficient information for a statistically acceptable results. In order to determine the best conditions of the variables in this in-situ process, Central Composite Rotatable Design (CCRD) was used for regression analysis and analysis of variance (ANOVA). Using RSM, the best conditions were chosen at temperature of 280.0 °C, pressure of 12.7 MPa, 30.0 min of reaction time and 1:40 (w/v) of seeds-to-methanol ratio. Interestingly, the qualitative Gas Chromatography (GC) analysis oil crude biodiesel showed the presence of FAMEs, indicating that the transesterification reaction had occurred during the in-situ process. The average saturated FAMEs content of the seed samples is low: 18.1% for methyl palmitate (C17:0) and 7.1% for methyl stearate (C19:0). The average content of the unsaturated FAMEs, methyl oleate (C19:1) and methyl linoleate (C19:2) is considerably higher which is 39.5 and 33.2%, respectively which are comparable to the fatty acid composition in crude JCL oil feedstock. The properties of biodiesel produced from this in-situ supercritical methanol transesterification were comparable with fuel properties of commercial No. 2 Diesel. It was found that specific gravity of JCL biodiesel was 0.87 g/cm³ and it falls between the ASTM D6751 ranges. The kinematic viscosity is 5.27 cSt. The flash point was determined to be 100 °C while the pour point of JCL biodiesel was measured to be 0 °C which is slightly higher than that of No. 2 Diesel fuel. The cloud point was reported to be -2.06 °C. The calorific value of JCL biodiesel is 39.3 MJ/kg, which is almost 88% of the calorific value of diesel (44.8 MJ/kg). Thus, the high-temperature high-pressure batch-wise reactor system could be a promising approach in production of JCL biodiesel from in-situ supercritical methanol transesterification.
TABLES OF CONTENTS

TITe PAGe
CANDIDATE'S DECLARATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES ix
LIST OF FIGURES xiii
LIST OF PLATES xvii
LIST OF APPENDICES xviii
LIST OF ABBREVIATIONS xxi

CHAPTER ONE: INTRODUCTION
1.1 The Global Energy Scenario 1
1.2 Alternative Energy – Biodiesel 3
 1.2.1 History 3
 1.2.2 The Role of Biofuel 3
1.3 Jatropha curcas Linnaeus 5
1.4 Problem Statements 6
1.5 Goal and objectives 9
1.6 Outline of the Thesis 10

CHAPTER TWO: LITERATURE REVIEW
2.1 Introduction 11
2.2 Oil Extraction 11
 2.2.1 Mechanical Pressing 12
 2.2.2 Soxhlet Extraction 13
 2.2.3 Use of Enzyme in Solvent-Bases and Pressing Extraction 15
 2.2.4 Supercritical Fluid Extraction 16
2.3 Process of Biodiesel Production 21
2.3.1 Direct Use or Blending
2.3.2 Microemulsions
2.3.3 Pyrolysis
2.3.4 Transesterification
 2.3.4.1 Homogeneous Alkali (Base) Catalyzed Transesterification
 2.3.4.2 Homogeneous Acid-Catalyzed Transesterification
 2.3.4.3 Heterogeneous Acid and Base-Catalyzed Transesterification
 2.3.4.4 Enzymatic Catalyzed Transesterification
 2.3.4.5 Supercritical Methanol Transesterification
2.4 In-situ Transesterification
2.5 Optimization of Process Parameter using Response Surface Methodology
 2.5.1 Central Composite Rotatable Design (CCRD)

CHAPTER THREE: MATERIALS AND METHODS
3.1 Materials and Chemicals
 3.1.1 *Jatropha curcas* L. sample
 3.1.2 *Jatropha curcas* L. Seeds Preparation
 3.1.3 Chemical Used in In-situ Supercritical Methanol Transesterification Experiment
 3.1.4 Chemicals Used in Fatty Acid Methyl Esters Analysis
3.2 In-situ Supercritical Methanol Transesterification System Set-up
 3.2.1 In-situ Supercritical Methanol Transesterification Experiments
3.3 In-situ Transesterification via Soxhlet Extraction
3.4 Decolourization of crude biodiesel
3.5 Determination of Biodiesel Properties
 3.5.1 Specific Gravity
 3.5.2 Kinematic Viscosity
 3.5.3 Cloud Point and Pour Point
3.6 Instrumental Analysis
 3.6.1 Gas-Chromatography Analysis