PHYSICOCHEMICAL CHARACTERISTICS AND SENSORY EVALUATION OF ‘KUIH BANGKIT’ MADE FROM BANANA STARCH

AYEESHA AHMAD MUSTAZA

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Food Science and Technology in the Faculty of Applied Science Universiti Teknologi MARA

NOVEMBER 2008
TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLES OF CONTENTS	iv
LISTS OF TABLES	v
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	x

CHAPTER 1 INTRODUCTION
1.1 Problem statement 1
1.2 Significance of study 1
1.3 Objectives 2

CHAPTER 2 LITERATURE REVIEW
2.1 Banana 3
 2.1.1 Types of banana 3
 2.1.2 Nutritional properties of banana 4
 2.1.3 Browning of banana 7
 2.1.4 Maturity indices of banana 8
2.2 Starch 10
 2.2.1 Tapioca starch 11
2.3 Ingredients in ‘Kuih Bangkit’ 12
 2.3.1 Banana starch 13
 2.3.2 Margarine 13
 2.3.3 Coconut milk 15
 2.3.4 Eggs 16
 2.3.5 Icing sugar 17
2.4 Production of ‘Kuih Bangkit’ 18

CHAPTER 3 METHODOLOGY
3.1 Raw materials and chemicals 21
3.2 Extraction of banana starch 21
3.3 Formulation of ‘Kuih Bangkit’ 22
3.4 Production of ‘Kuih Bangkit’ 23
3.5 Sensory evaluation 24
3.6 Physical analysis 25
CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Starch extraction yield 31
4.2 Sensory evaluation 32
 4.2.1 Appearance 32
 4.2.2 Color 33
 4.2.3 Taste 33
 4.2.4 Texture 34
 4.2.5 Overall acceptability 34
4.3 Chemical analysis 35
 4.3.1 Fat content 36
 4.3.2 Carbohydrate content 36
 4.3.3 Crude fiber content 37
 4.3.4 Protein content 38
 4.3.5 Moisture content 38
 4.3.6 Total ash 38
4.4 Physical analysis 39
 4.4.1 Fracturability 39

CHAPTER 5 CONCLUSION AND RECOMMENDATION 41

REFERENCES 43
APPENDICES 45
CURRICULUM VITAE 53
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of resistant starch.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Proximate composition of the edible portion of banana at different stages as classified by the color of the banana peel.</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Formulation of ‘Kuih Bangkit’.</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Yield and color of starch from different types of banana</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean value of the sensory evaluation for ‘kuih Bangkit’ with the substitution of different type of starch.</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean value of the proximate analysis for ‘kuih Bangkit’ with the substitution of different type of starch.</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean value of fracturability for ‘kuih Bangkit’ with the substitution of different type of starch.</td>
<td>39</td>
</tr>
</tbody>
</table>
ABSTRACT

PHYSICOCHEMICAL CHARACTERISTICS AND SENSORY EVALUATION OF ‘KUIH BANGKIT’ MADE FROM BANANA STARCH

Interest in nutraceutical food has increased in consumer demands such as high fiber food products. However, addition or substitution of the ingredient gives several differences in taste, appearance, color and texture to the products. The objective of this final year project is to developed ‘Kuih Bangkit’, by substituting tapioca starch as the main ingredient with banana starch from different types of unripe banana such as ‘Pisang Rastali’, ‘Pisang Berangan’, ‘Pisang Nangka’. The study involved sensory analysis to determine the best formulation of cookies among the three types of banana. Besides that, chemical analysis was conducted to determine the proximate analysis between cookies from tapioca starch which was the control and the best cookies from banana starch. The effect of this substitution on the cookies was also determined by measuring the fracturability. From the analysis conducted, the best formulation which was most preferred by the panelist was cookies which were substituted with 50% of ‘Nangka’ banana starch with the mean value of 7.60. Proximate composition studies showed that cookies from banana starch contained 44.9% crude fiber, 33.7% carbohydrate, 16.4% fat, 2.4% protein, 2.0% moisture, and 0.6% ash. While control cookies contained 43.6% crude fiber, 34.0% carbohydrate 17.7% fat, 3.0% moisture, 1.4% protein and 0.25% ash. From the texture analysis, control cookies required 744.67g force while cookies from banana starch required 1150.67g to fracture.