EFFECT OF COPOLYMER MALEIC ANHYDRIDE GRAFTED POLYPROPYLENE (MAGPP) IN WOOD COMPOSITE OF CELLULOSE FROM OIL PALM FROND AS A FILLER

SYAZWANI BT ABD AZIZ

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science Hons.) Chemistry in the Faculty of Applied Sciences University Teknologi MARA

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	Х
ABSTRACT	xii
ABSTRAK	xiii

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	2
1.3	Significance of study	3
1.4	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Oil Palm Biomass			
	2.1.1	Oil Palm Frond	5	
2.2	2.2 Chemical composition of wood			
	2.2.1	Cellulose	6	
	2.2.2	Hemicellulose	8	
	2.2.3	Lignin	8	
2.3	Wood Plastic Composite			

	2.3.1	Cellulose as a filler	9
	2.3.2	Polypropylene as a matrix	10
	2.3.3	MAgPP as coupling agents	11
2.4	Physica	al and Mechanical Properties	13
	2.4.1	Tensile Test	13
	2.4.2	Water Absorption Test	13
	2.4.3	Thickness Swelling Test	14

CHAPTER 3 METHODOLOGY

3.1	Materials			15
	3.1.1	Raw ma	terials	15
	3.1.2	Chemica	als and Reagents	15
	3.1.3	Equipme	ent and Analytical Instruments	15
3.2	Methods			16
	3.2.1	Preparat	ion of raw material	16
		3.2.1.1	Chipping and Flaking	16
		3.2.1.2	Grinding and Sieving	17
	3.2.2	Purificat	ion and bleaching of cellulose	17
		3.2.2.1	Alcohol extraction with toluene	17
		3.2.2.2	Removal of hemicellulose with	18
			sodium hydroxide	
		3.2.2.3	Removal of lignin with	18
			hydrogen peroxide	
	3.2.3	Preparat	ion of the WPC	19
		3.2.3.1	Blending in the Dispersion mixer	19
		3.2.3.2	Formation of WPC pellets	20

		3.2.3.3	Preparation of hot and cold	20		
			press moulded WPC pellets			
	3.2.4	3.2.4 Cutting WPC boards for testing				
		3.2.4.1	Tensile Strength cutting size	20		
		3.2.4.2	Thickness Swelling and	21		
			Water Absorption Cutting size			
3.3 Testing methods				21		
	3.3.1	Physical	Physical test			
	3.3.2	3.3.2 Mechanical test				
		3.3.2.1	Tensile Strength	23		
		3.3.2.2	Fourier Transform Infrared (FTIR)	23		
			Spectroscopy			
3.4	Summary			24		

CHAPTER 4 RESULTS

4.1	Strength and Mechanical properties of the WPC		
	4.1.1	Effect of MAPP on tensile (modulus of elasticity)	27
	4.1.2	Effect of MAPP on thickness swelling and	27
		water absorption	
	4.1.3	Effect of MAPP on melting point	29
4.2	Mechanical Test		
	4.2.1	Extraction of cellulose by FTIR	29

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 32

ABSTRACT

EFFECT OF COPOLYMER MALEIC ANHYDRIDE GRAFTED POLYPROPYLENE (MAgPP) IN WOOD COMPOSITE OF CELLULOSE FROM OIL PALM FROND AS A FILLER

The use of cellulose from Oil Palm Frond (OPF) as a filler in Polypropylene matrix to prepare Wood Plastic Composite (WPC) has been reported. In order to improve interfacial adhesion, Maleic Anhydride Grafted Polypropylene (MAgPP) was used to evaluate the chemical and physical properties of the WPC. The presence of MAgPP at a different percentage (0 %, 1 %, 2 % and 3 %) on the tensile strength (TS), water absorption (WA) and thickness swelling (TS) were tested. The sample was characterized using Fourier Transform Infrared (FTIR). This study was determined that all sample properties were significantly influenced by the presence of MAgPP. The tensile strength results displayed an increment with the uses of MAgPP while the modulus of elasticity decreases. The WA and TS result decreased with the presence of MAgPP in comparison without the presence of MAgPP. The FTIR analysis confirmed the purity of the cellulose. This study suggests the uses of cellulose from OPF as a filler and application of MAgPP to improve the interfacial adhesion in the production of WPC are suitable and recommended.