PERFORMANCE COMPARISON OF NUMERICAL INTEGRATION METHODS FOR SOLVING COMPLICATED INTEGRATION PROBLEMS

WAN ARIESHA FARHAH BINTI WAN ASRI NUR HAZWANI BINTI DAHNAN

Thesis Submitted in Fulfilment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2019

DECLARATION BY CANDIDATE

We certify that this report and the project to which it refers is the product of our own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

WAN ARIESHA FARHAH BINTI WAN ASRI 2016289628 11th July 2019

NUR HAZWANI BINTI DAHNAN

2016299114

11th July 2019

ABSTRACT

Solving integration problems is very important as it is commonly appeared in wide range of fields and profession such as physics, mathematics and engineering. There are four known theoretical methods used to solve integration problems which are integration by substitution, integration by trigonometric substitution, integration by partial fraction and integration by part. However, these theoretical methods are quite complicated and leads to long and laborious calculation. Therefore, researchers tend to use numerical method which is quite simple and easy. In this project, seven numerical methods that are Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule, Boole's Rule, Weddle's Rule, Durand's Rule and Hardy's Rule are chosen to solve complicated integration problems. The error is analyzed using percentage error of both exact and approximate value. The main purpose of this study is to determine the best numerical methods for solving integration problems.

TABLE OF CONTENT

			Page			
DECLARATION BY THE SUPERVISOR						
DECI	LARAT	ATION BY THE SUPERVISOR I ATION BY CANDIDATES ii CT iii VLEDGEMENT iv F CONTENT v				
ABSTRACT						
ACKNOWLEDGEMENT						
TABLE OF CONTENT						
LIST	OF TAI	CONTENTvABLEixGURESxiBBREVIATIONS AND SYMBOLSxii				
LIST OF FIGURES						
LIST OF ABBREVIATIONS AND SYMBOLS						
1.0	INTR	ODUCTION OF RESEARCH	1			
	1.1	Introduction	1			
	1.2	Background of Study	1			
	1.3	Problem Statement	5			
	1.4	Objectives	5			
	1.5	Significant of Project	6			
	1.6	Scope of Project	8			
	1.7	Project Benefits	9			
	1.8	Definitions of Terms and Concepts	9			
	1.9	Literature Review	11			
	1.10	Organization of Report	13			

2.0 METHODOLOGY

3.0

2.1	Introduction			
2.2	Research Step			
2.3	Prelin	ninary Theory of Integration Equation	18	
	2.3.1	Integration Equations	18	
	2.3.2	Interval and Subinterval	19	
2.4	Theor	etical Methods for Solving for Integration Problem	20	
	2.4.1	Trigonometric Substitution	20	
	2.4.2	Integration by Parts	21	
	2.4.3	Integration by Partial Fraction	22	
	2.4.4	Integration by Substitution	25	
2.5	Nume	rical Methods for Solving Integration Problem	25	
	2.5.1	Trapezoidal Rule	26	
	2.5.2	Simpson's 1/3 Rule	27	
	2.5.3	Simpson's 3/8 Rule	27	
	2.5.4	Hardy's Rule	28	
	2.5.5	Durand's Rule	28	
	2.5.6	Boole's Rule	29	
	2.5.7	Weddle's Rule	30	
2.6	Conclusion			
IMPL	IMPLEMENTATION			
3.1	Introduction			
3.2	Sample of Functions			
3.3	Implementation of Theoretical Method			

15