COMPARATIVE STUDY OF OPTIMIZATION METHOD FOR SOLVING LARGE SYSTEM OF LINEAR EQUATION

FATIN AMANI BINTI MOHD ALI

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2017

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

.....

FATIN AMANI BINTI MOHD ALI

2014471564

23 JULY 2017

ABSTRACT

System of linear equations are usually solve using inverse of matrix. However, finding inverse for large of system of linear equation a problem and burden the computer. Therefore, many researches tend to use indirect method in the form of optimization method such as Steepest descent (SD) method, Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and Conjugate Gradient (CG) method. In this project, three optimization methods are chosen to solve small and large system of linear equation. The matrix that is used consist of positive and negative definite of six different dimension. The comparative results analysis of these methods is based on number of iteration and CPU time. The performance profile that is presented by Dolan and More is also used to analyse the result. From the result, it shown that Polak-Ribiere-Polyak (PRP) method which is one of the CG method is the best method to solve system of linear equation.

iii

TABLE OF CONTENTS

DECLARATION BY THE SUPERVISORS				
DECLARATION BY CANDIDATE				
ABSTRACT				
ACKNOWLEDGEMENT				
TABLE OF CONTENT				
LIST OF TABLES				
LIST OF FIGURES				
LIST OF ABBREVIATIONS AND SYMBOLS				
LIST OF ALGORITHMS				
1. INTRODUCTION OF RESEARCH				
1.1	Introduction	1		
1.2	Background of Study	1		
1.3	Problem Statement	4		
1.4	Objectives	5		
1.5	Significant of the Project	6		
1.6	Scope of Project	6		
1.7	Project Benefit	8		
1.8	Organization of Project	9		

v

Page

2.	METHODOLOGY				
	2.1	Introduction			
	2.2	Literature Review			
	2.3	Definition of Terms and Concepts			
		2.3.1	Optimization	16	
		2.3.2	Number of Iteration	17	
		2.3.3	Error Analysis	17	
		2.3.4	CPU time	18	
		2.3.5	Steepest Descent (SD) Method	18	
		2.3.6	Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method	18	
		2.3.7	Polak-Ribiere-Polyak (PRP) Method	19	
		2.3.8	Rivaie, Mustaffa, Ismail and Leong (RMIL) Method	19	
		2.3.9	Positive and negative definite	19	
		2.3.10	Symmetric matrix	20	
		2.3.11	Non-symmetric matrix	20	
	2.4	Research Step			
	2.5	Fundamental Concept of Unconstrained Optimization Method			
		2.5.1	Steepest Descent (SD) Method	27	
		2.5.2	Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method	28	
		2.5.3	Conjugate Gradient (CG) Method	29	
	2.6	Sample of Matrix			
		2.6.1	Symmetric Matrix	30	
		2.6.2	Non-symmetric Matrix	33	

vi