APPLICATIONS AND COMPARISON OF QUADRATIC AND CUBIC RATIONAL BEZIER CURVE ON BATIK DESIGN

MUHAMMAD IZHAR BIN ISHAK

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

2017

DECLARATION

I certify this project to which it refers the product of my own work that any idea or quotation of other people, published or otherwise are fully acknowledged in accordance with standard referring practices of the discipline.

Mg

MUHAMMAD IZHAR BIN ISHAK 2014821022

Date:

ABSTRACT

Rational Bezier curve is well known areas of research in computer aided geometric design (CAGD). This research proposed a new method to develop Batik design which is quadratic and cubic rational Bezier curve. This is a new approach of for the Batik industry by implementing the method using Mathematica software. This research deals with generating the Batik design and manipulation of weight magnitude to generate design closest to the real figure. This research is to improve Batik industry by using computer aided geometric design in generating a design. Lastly the results show that this research has potential to improve the Batik industry.

TABLE OF CONTENTS

DECLARATION BY SUPERVISOR	1
DECLARATION	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv-vi
LIST OF TABLE	vii
LIST OF FIGURE	viii-xi
ABSTRACT	xii
CHAPTER 1: INTRODUCTION TO RESEARCH	1
1.1 Introduction	1
1.2 Background of study	1-3
1.3 Problem Statement	3
1.4 Objective	4
1.5 Significance of the project	4
1.6 Scope of the project	4
1.7 Project benefits	5
1.8 Organization of the project	5-6
CHAPTER 2: LITERATURE REVIEW AND METHODOLOGY	. 7
2.1 Introduction	7
	/

2.2 Definition of term and concept	7

2.3 Literature review	8-10
2.4 Methodology	10-11
2.41 Bernstein polynomials	11
2.411 Basis graph for degree one	12-13
2.412 Basis graph for degree two	14-16
2.413 Basis graph for degree three	16-19
2.42 Rational Bezier curve	19
2.421 Quadratic rational Bezier curve	20-22
2.422 Cubic rational Bezier curve	22-28
2.5 Conclusion	28

29

Chapter 3: IMPLEMENTATION

3.1 Introduction	29
3.2 Research data	29-30
3.3 Rational Bezier curve	30-31
3.4 Quadratic rational Bezier curve	31-35
3.41 Global weights for all curves	35-36
3.42 Weights are same for each curve	36-37
3.43 Different value for all weights	37-40
3.44 Manipulation of second weight for each curve	40-43
3.5 Cubic rational Bezier curve	43-47
3.51 Global weight and same weight for each curve	47-48
3.52 Different value for all weights	48-51
3.53 Manipulation of second and third weight of each curve	51-54
3.6 Conclusion	54