IMPROVEMENT OF NEURAL NETWORK PERFORMANCE BY DATA SELECTION USING RADIAL BASIS FUNCTION AND HYBRID MULTILAYERED PERCEPTRON NETWORK

BY: AHMAD PUAD BIN ISMAIL NAZIRAH BINTI MOHAMAT KASIM SAIFUL ZAIMY BIN YAHAYA

DECEMBER 2008

TABLE OF CONTENTS

TITLE	
DECLARATION	
ACKNOWLEDGEMENT	
TABLE OF CONTENTS	ii
LIST OF FIGURES	v
LIST OF TABLES	vii
ABBREVIATION	viii
ABSTRACT	ix

PAGE

CHAPTER 1		
INTRODUCT	ION	1
1.1	Overview	1
1.2	Objectives	2
1.3	Scope of works	3
1.4	Organization of the thesis	3

CHAPTER 2		5
LITERATURE	REVIEW	5
2.1	2.1 Introduction	
2.2	Position control	
	2.2.1 Feedback Modular Servo (MS150) Control System	7
2.3	Neural Network	8
	2.3.1 History of Neural Networks	9
	2.3.2 Biological Neuron System	11
	2.3.3 Artificial Neural Network	12
	2.3.4 Types of Artificial Neural Network	13
	2.3.5 Learning Rule	16
2.4	Review of Radial Basis Function Networks	18
	2.4.1 Radial Basis Function Neural Network	19
	2.4.2 Network topology	22
	2.4.3 Input layer	23
	2.4.4 Hidden layer	23
	2.4.5 Output layer	24
	2.4.6 Gaussian function	24
2.5	Training the RBFNN with fixed center	26
2.6	Hybrid Multilayered Perceptron HMPL Neural Network	28

2.7	Modified Recursive Prediction Error (MRPE) Algorithm		
2.8	Applications of neural network in system modeling		
2.9	Data Selection Method		
	2.9.1 Fuzzy Clustering	34	
	2.9.2 Self Organizing Maps	36	
2.10	Summary	39	

CHAPTER 3

CHAPTER 3		40
METHODOLOG	GY	40
3.1	3.1 Introduction	
3.2	Research Development Methodology	
	3.2.1 Knowledge Acquisition and Hypothesis Study	43
	3.2.2 Data collection	43
	3.2.3 Software requirement	46
3.3	Algorithm Design and parameters setting	46
3.4	Simulation and observation	47
	3.4.1 Training phase	47
	3.4.2 Testing phase	50
3.5	Matlab	51
	3.5.1 Program Design	52
	3.5.1.1 Programming of Data Selection	52
	3.5.1.2 Structured Programming of HMLP Network	54
3.6	Evaluation and analysis	58
3.7	Documentation	58
3.8	Summary	58

CHAPTER 4

SIMULATION	RESULTS AND DISCUSSION	59
4.1	Introduction	59
4.2	Simulation result	60
4.3	4.3 Training phase	
	4.3.1 Simulation for training phase	60
	4.3.2 Error convergence	64
4.4	Testing phase	65
	4.4.1 Simulation for testing phase	65
	4.4.1.1 First testing data	66
	4.4.1.2 Second testing data	68
4.5	RBFNN Learning rate	70
4.6	RBFNN Radius	74
	4.6.1 Training with different radius	74
4.7	HMLP Performance	81
	4.7.1 Analysis of Epochs	81

59

	4.7.2	Analysis of Hidden Nodes	83
	4.7.3	Analysis on Training Data	84
	4.7.4	Analysis on Testing Data	85
	4.7.5	HMLP Discussions	86
CHAPTER	5		89
CONCLUSION AND FUTURE DEVELOPMENT		89	
5.1	Conclu	ision	89
5.2 Future development		90	

REFERENCES APPENDIXES

ABSTRACT

This thesis presents the implementation of Radial Basis Function (RBF) and Hybrid Multilayered Perceptron(HMLP) Neural Network for a classical controller modeling. The word modeling means to develop or to model the controller by using the RBF and HMLP Neural Network that has the ability to predict the output just like the classical controller. The modeling of the classical controller is done through training process of RBFNN and HMLPNN. The purpose of training phase is to obtain the right NN model of the classical controller and it is done through error reduction. If the error cannot be satisfied, the existing network parameters such as weights are updated. In this research project, the input and output pairs of Feedback Modular Servo System Model (MS150) which is controlled by PID controller are taken to perform the simulation for RBFNN. The input of the classical controller is the position error and velocity error. The output of the classical controller is the input voltages that drive the motor. The total selected data is 156. Then 52 data is used for training phase, 52 data for the first testing phase and another 52 data for the second testing phase. The input and output pairs from existing controller was the input for the RBFNN and HMLPNN controller. The simulation involves several phase. The first phase is the training process which is to train the network to find the optimum weights while the error is zero. After the network has been trained, the second phase is the testing process which is to test the performance of the trained network. Different sets of data is used for the testing process and through this process, the performance of the RBFNN and HMLPNN model can be measured. The output of the RBFNN and HMLPNN then compared with the desired output of the classical controller. The simulation results showed that both NN controller can predict the output that similar to the desired output of the classical controller even though the output not exactly the same. It is important to remarks that, the testing data has not been seen at all during the training process. Showing that the training algorithm has the good generalization abilities to predict the output and the data that used during the training phase covers well all the appropriate zone of the input space.