HIGHER DIMENSIONAL LAPLACE EQUATION FOR NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITION

MUHAMMAD IRFAN BIN YASIN

Thesis Submitted in Fulfilment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

January 2019

DECLARATION BY CANDIDATE

I certify that this report and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

MUHAMMAD IRFAN BIN YASIN 2015686538

08 JANUARY 2019

1.1

ABSTRACT

In this project, we start our study of Laplace's equation, which represents the steady state of a field that depends on two or more independent variables, which are typically spatial. We demonstrate the decomposition of the nonhomogeneous Dirichlet Boundary value problem for the Laplacian on a rectangular domain and solid cuboid. For the rectangular domain, we separate into a sequence of four boundary value problems which each having only two boundary segment that has nonhomogeneous boundary conditions. Then for the solid cuboid, we separate into a sequence of six boundary value problems which each having only two boundary is subject to homogeneous boundary value problems which each having only two boundary is subject to homogeneous boundary value problems which each having only two boundary is subject to homogeneous boundary conditions and the remainder of the boundary segment that has nonhomogeneous boundary conditions and the remainder of the boundary segment that has subject to homogeneous boundary conditions. These latter problems can then be solved by separation of variables method.

TABLE OF CONTENTS

DECLARATION BY SUPERVISOR	ii
DECLARATION BY CANDIDATE	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLE	ix
LIST OF FIGURES	х
LIST OF ABBREVIATIONS AND SYMBOLS	xi
CHAPTER 1: INTRODUCTION OF PROJECT	
1.1 Introduction	12
1.2 Fundamental Concept of Laplace's Equation	12
1.3 Problem Statement	14
1.4 Objectives	16
1.5 Significant of Project	16
1.6 Scope of Project	17
1.7 Project Benefit	18
1.8 Organizational of the Report	18

CHAPTER 2: LITERATURE REVIEW AND METHODOLOGY

2.1 Introduction	20
2.2 Literature Review	20
2.3 Definition of Terms and Concepts	23
2.4 Research Step	24
CHAPTER 3: IMPLEMENTATION	
3.1 Introduction	29
3.2 Basic Derivation of Steady State Solutions in Higher Dimensions	29
3.3 Conclusion	50
NS265	
CHAPTER 4: RESULT AND DISCUSSION	
4.1 Introduction	51
4.2 Derivation of Laplace Equation for Nonhomogeneous Dirichlet Boundar	ry
Condition	51
4.2.1 Example of 2D-Laplace Equation for Nonhomogeneous Dirichlet	
Boundary Condition	91
4.2.2 Example of 3D-Laplace Equation for Nonhomogeneous Dirichlet	
Boundary Condition	94