# A MODIFIED FOUR SECTIONS METHOD FOR SOLVING NONLINEAR EQUATION

### NUR 'IZZATI BINTI AHMAD RIFA'I NOR WARDATUSHIHAH BINTI SHAHROM

Thesis Submitted in Fulfilment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

2019

### **DECLARATION BY CANDIDATE**

We certify that this report and the project to which it refers is the product of our own work that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.



NUR 'IZZATI BINTI AHMAD RIFA'I 2016289602 11 JULY 2019

NOR WARDATUSHIHAH BINTI SHAHROM

2016289468

11 JULY 2019

#### ABSTRACT

The multi sections method is a family of an upgraded version of bisection method. In this project, four sections method will be studied and improved. The difference between these two methods is the number of intervals itself. For the bisection method, the interval is divided into two equal intervals. Meanwhile, the interval in four sections method is divided into four equal sections. The root is then identified either in the first, second, third or fourth interval by determining the sign of the product of the function at both interval ends. The iterative sequence is continued until a desired stop criterion has been reached. In this research, a modification of four sections method is introduced. These methods are tested for several selected functions by using Maple software. The results are then analysed to determine the accuracy and efficiency of this new method based on the number of iterations and the CPU times. Based on the results, it is shown that when the interval increases, the CPU times will increase, however the number of iterations is reduced significantly.

# **TABLE OF CONTENT**

| DECLARATION BY THE SUPERVISOR |                                 | i    |
|-------------------------------|---------------------------------|------|
| DECLARATION BY CANDIDATE      |                                 | ii   |
| ABSTR                         | ACT                             | iii  |
| ACKNO                         | DWLEDGEMENT                     | iv   |
| TABLE OF CONTENT              |                                 | v    |
| LIST OF TABLE                 |                                 | viii |
| LIST OF FIGURE                |                                 | ix   |
| LIST OF ALGORITHM             |                                 | x    |
|                               |                                 |      |
| 1.0 IN                        | TRODUCTION OF RESEARCH          | 1    |
| 1.1                           | Introduction                    | 1    |
| 1.2                           | Background of the study         | 1    |
| 1.3                           | Problem Statement               | 4    |
| 1.4                           | Objectives                      | 5    |
| 1.5                           | Significant of Project          | 5    |
| 1.6                           | Scope of Project                | 6    |
| 1.7                           | Project Benefits                | 7    |
| 1.8                           | Definition of Terms and Concept | 8    |
| 1.9                           | Literature Review               | 8    |
| 1.10                          | Organization of Report          | 11   |
|                               |                                 |      |
| 2.0 MF                        | ETHODOLOGY                      | 13   |
| 2.1                           | Introduction                    | 13   |

| 4   | 2.2                        | Research step                                     | 13 |
|-----|----------------------------|---------------------------------------------------|----|
| 4   | 2.3                        | Sample of function                                | 16 |
|     | 2.4                        | Numerical Methods for Finding Root                | 20 |
|     | 2.4.                       | 1 Bisection method                                | 20 |
|     | 2.4.                       | 2 Modified Bisection method                       | 22 |
|     | 2.4.                       | 3 Four sections method                            | 24 |
|     | 2.4.                       | 4 Modified Four sections method                   | 26 |
|     | 2.4.                       | 5 Newton's method                                 | 29 |
| 1   | 2.5                        | Conclusion                                        | 31 |
|     |                            |                                                   |    |
| 3.0 | IME                        | PLEMENTATION                                      | 32 |
|     | 3.1                        | Introduction                                      | 32 |
| -   | 3.2                        | Preliminary Study                                 | 32 |
| -   | 3.3                        | Implementation of root finding methods            | 33 |
|     | 3.3.                       | 1 Implementation of Bisection method              | 33 |
|     | 3.3.                       | 2 Implementation of Modified Bisection Method     | 38 |
|     | 3.3.                       | 3 Implementation of Four Sections method          | 44 |
|     | 3.3.                       | 4 Implementation of Modified Four sections method | 53 |
|     | 3.3.                       | 5 Implementation of Newton's Algorithm            | 63 |
| -   | 3.4                        | Error calculation                                 | 66 |
| -   | 3.5                        | Conclusion                                        | 66 |
|     |                            |                                                   |    |
| 4.0 | 4.0 RESULTS AND DISCUSSION |                                                   |    |
| 4   | 4.1                        | Introduction                                      | 67 |
| 4   | 4.2                        | Number of iterations                              | 67 |
|     |                            |                                                   |    |