SOLVING TWO DIMENSIONAL ELECTROSTATIC FIELD PROBLEMS BY USING FINITE ELEMENT METHOD

NURUL ALIAH BINTI ABDUL RAHIM NUR FATINI BINTI MOHAMAD RADZI

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2019

DECLARATION BY CANDIDATE

We certify that this report and the project to which it refers the product of our own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledge in accordance with the standard referring practices of the discipline.

.

Nur Fatini binti Mohamad Radzi 2016289636

Nurul Aliah binti Abdul Rahim

2016299138

JULY 11, 2019

ABSTRACT

In this paper, finite element method is applied in finding the electrostatic potential and the electric flux of an electric field by using Poisson equation in the region of irregular boundaries with distributed charges. The finite element method is easier to be implemented on a digital computer system and it is flexible to select any desired degree of approximation without having to reformulate the problem. The results of electrostatic potential value in each node and the electric flux of the irregular boundaries discretization will be computed by using the BlueJ software and Microsoft Excel 2013. The approximation solutions obtained were compared with the exact solutions. The error for electric flux density in each node of the irregular boundaries is calculated iteratively by until we reach 1.0 stopping criterion.

TABLE OF CONTENT

DECLARATION BY SUPERVISOR	i
DECLARATION BY CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGMENT	iv
LIST OF TABLE	v
LIST OF FIGURE	vii
LIST OF ALGORITHM	ix
LIST OF ABBREVIATION AND SYMBOLS	х
1.0 INTRODUCTION TO RESEARCH	1
1.1 Introduction	1
1.2 Background of study	1
1.3 Problem Statement	5
1.4 Objectives	6
1.5 Significant of Project	6
1.6 Scope of Project	7
1.7 Project Benefits	8
1.8 Definition of Terms and Concepts	9
1.9 Literature Review	11
1.10 Organization of Report	16
2.0 METHODOLOGY	18
2.1 Introduction	18

	2.2 Research Step	18
	2.2.1 Step 1 : Two dimensional domain discretization	18
	2.2.2 Step 2 : Derivation of Poisson equation of two	
	dimensional electrostatic fields	19
	2.2.3 Step 3 : Derivation of Laplace Equation for irregular	
	boundary conditions	19
	2.2.4 Step 4 : Construct computer programming	20
	2.2.5 Step 5 : Test run programming code	20
	2.2.6 Step 6 : Calculation of electrostatic potential in each node	21
	2.2.7 Step 7 : Calculation of electric flux density vector	22
	2.2.8 Step 8 : Error analysis based on the number of iteration	23
2.3	Fundamental of Finite element method	24
2.4	Conclusion	24
3.0	IMPLEMENTATION	26
	3.1 Introduction	26
	3.2 Sample of data	26
	3.3 Sample of input values	28
	3.4 Implementation of Finite element method	30
	3.4.1 Calculate for x dimension by using second derivatives	30
	3.4.2 Calculate for y dimension by using second derivatives	30
	3.4.3 First iteration of Electric flux density vector	35
	3.4.4 Second iteration of Electric flux density vector	44
	3.5 Error calculations	51
	3.6 Conclusion	53