SOLVING FIRST ORDER ORDINARY DIFFERENTIAL EQUATION USING ADAPTIVE RUNGE-KUTTA METHOD

SYAUQINA NADIA BINTI HAZLIN

Report submitted in fulfilment of the requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA

January 2020

DECLARATION BY CANDIDATE

I certify that this report and the report to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledge in accordance with the standard referring practices of the discipline.

SYAUQINA NADIA BINTI HAZLIN

2016289488

3 JANUARY 2019

ABSTRACT

Runge-Kutta (RK) method can be used to solve first order ordinary differential equation problem in the form of numerical method. Recently, researchers have developed many versions of Runge-Kutta method to increase its accuracy and efficiency. In this research, fourth order adaptive Runge-Kutta methods of Bogacki-Shampine, Cash-Karp, Runge-Kutta of Order Four and Runge-Kutta Fehlberg are used to solve six different first order ordinary differential equation problems using different step size and final solution point. The numerical results are compared with theoretical solution in order to obtain accuracy and to determine the best method based on error and central processing unit (CPU) time.

TABLE OF CONTENT

Page

DECLARATION BY SUPERVISOR	i
DECLARATION BY CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLES	viii
LIST OF FIGURES	xi
LIST OF ALGORITHMS	xii
LIST OF ABBREVIATIONS AND SYMBOLS	xiii

1.0 INTRODUCTION OF RESEARCH

1.1	Introduction	1
1.2	Background of Study	1
1.3	Problem Statement	2
1.4	Objectives	3
1.5	Significant of Project	4
1.6	Scope of project	4
1.7	Project Benefits	5
1.8	Definition of Terms and Concepts	6
1.9	Literature Review	7
1.10	Organization of Report	10

2.0 METHODOLOGY

2.1	Introduction		
2.2	Theor	etical Solution of First Order ODE	13
	2.2.1	First order of Linear ODE	14
	2.2.2	First order of Separable ODE	15
	2.2.3	First order of Homogeneous ODE	16
	2.2.4	First order of Bernoulli's ODE	17

		2.2.5	First order of Exact ODE	18	
	2.3	Nume	rical Solution of First Order ODE using Adaptive	20	
		Runge	e-Kutta Method		
		2.3.1	Fundamental of Order Four Bogacki-Shampine	21	
			Method		
		2.3.2	Fundamental of Order Four Cash-Karp Method	22	
		2.3.3	Fundamental of Order Four Runge-Kutta	23	
			Method		
		2.3.4	Fundamental of Order Four Runge-Kutta	24	
			Fehlberg Method		
	2.4	Resea	rch Step	25	
	2.5	Concl	usion	28	
3.0	IMP	IMPLEMENTATION			
	3.1	Introduction			
	3.2	Sample of First Order ODE Problem			
	3.3	Theore	etical Solution of First Order ODE Problems	31	
		3.3.1	Solution of First Order Linear ODE Problem	32	
		3.3.2	Solution of First Order Bernoulli's ODE Problem	34	
		3.3.3	Solution of First Order Separable ODE Problem	37	
	2.4	Nume	rical Solution of First Order ODE Problems using	39	
	5.4	Adapti	ive Runge-Kutta Method		
		3.4.1	Fourth Order Bogacki-Shampine Method	41	
		3.4.2	Fourth Order Cash-Karp Method	44	
		3.4.3	Fourth Order Runge-Kutta Method	50	
		3.4.4	Fourth Order Runge-Kutta Fehlberg Method	53	
	3.5	Error Calculation			
	3.6	Conclusion			