COMPARISONS BETWEEN NEWTON AND QUASI-NEWTON METHOD IN SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS

NAZNIN FAIQA BINTI KHIRUL FOZI HANIS SOFIA BINTI MOHD RODI

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2019

DECLARATION BY CANDIDATE

We certify that this report and the project to which it refers is the product of our own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

HANIS ŠOFIA BINTI MOHD RODI 2016299256 11 JULY 2019

NAZNIN FAIQĂ BINTI KHIRUL FOZI 2016299226 11 JULY 2019

ABSTRACT

Newton and Quasi-Newton methods are widely used in solving unconstrained optimization problems. The solution to optimization problems are known as local optimum solutions and global minimum solutions. For Newton method, if the initial points are far from the solution points, it may fail to converge. As an alternative, two Quasi-Newton methods which are Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods were developed to overcome this problem. In this research, a comparison was made between Newton and Quasi-Newton method to determine the best method in solving unconstrained optimization problems. These methods were tested using six test functions with different initial points and their performance were compared based on the number of iterations, CPU time, and accuracy. This research also discussed about the convergence rate, global convergence and local convergence of the three methods. From numerical results, it has been shown that BFGS method is better compared to the other methods.

TABLE OF CONTENT

	Page
DECLARATION BY THE SUPERVISOR	1
DECLARATION BY THE CANDIDATE	ii
ABSTRACT	111
ACKNOWLEDGEMENT	iv
LIST OF FIGURE	ix
LIST OF TABLE	Х
LIST OF ALGORITHM	xi
LIST OF ABBREVIATION AND SYMBOL	xii

CHAPTER ONE: INTRODUCTION OF THE RESEARCH

1.1	Introduction	1
1.2	Background of the Study	1
1.3	Problem Statement	4
1.4	Objectives	6
1.5	Significance of the Project	6
1.6	Scope of the Project	6
1.7	Project Benefit	7
1.8	Definition of Terms and Concepts	8
1.9	Organization of the Project	9

CHAPTER TWO: METHODOLOGY AND LITERATURE REVIEW

2.1	Introduction	11
2001	111110 0 0000 0 0 0 1	

2.2	Research Step		
2.3	Literature Review		
2.4	Fundamental Concepts for Unconstrained Optimization Problem		
	2.4.1	Newton's Method	19
	2.4.2	David-Fletcher-Powell (DFP) Method	20
	2.4.3	Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method	22
2.5	Conclu	usion	24
CHA	PTER 1	THREE: IMPLEMENTATION	
3.1	Introdu	uction	25
3.2	Impler	nentation of Numerical Methods	25
	3.2.1	Implementation of Newton Method	26
	3.2.2	Implementation of Quasi-Newton Method	35
3.3	Calculation of Error		48
3.4	Conclu	usion	49
CHA	PTER I	FOUR: NUMERICAL RESULTS AND DISCUSSION	

4.1	Introd	uction	50
4.2	Sample of Test Functions		50
	4.2.1	Problem 1: Three Hump Camel Function	51
	4.2.2	Problem 2: Six Hump Camel Function	52
	4.2.3	Problem 3: Himmelblau Function	53
	4.2.4	Problem 4: White and Holst Function	54
	4.2.5	Problem 5: Nonscomp Function	54
	4.2.6	Problem 6: Leon Function	55