UNIVERSITI TEKNOLOGI MARA

DISTANCE – BASED RANKING OF FUZZY NUMBERS

AHMAD SYAFADHLI BIN ABU BAKAR

Thesis submitted infulfillment of the requirements for the degree of Master of Science

Faculty of Computer and Mathematical Sciences

November 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Ahmad Syafadhli Bin Abu Bakar
Student I.D. No.	:	2009696534
Programme	:	Master of Science (Information Technology and Quantitative Sciences)
Faculty	:	Faculty of Computer and Mathematical Sciences
Thesis Title	:	Distance – Based Ranking of Fuzzy Numbers
Signature of Candidate	:	
Date	:	November 2012

ABSTRACT

Ranking fuzzy numbers is one of the crucial areas of research in fuzzy set theory. Essentially, each presented ranking method is targeting on producing appropriate ranking order for a set of all types of fuzzy numbers including in ranking combinations of more than two fuzzy numbers properly. However, to rank fuzzy numbers appropriately may not be an easy task as fuzzy numbers are represented by possibility distribution hence indicates that they may or may not overlap with each other, having different shapes and distinct in terms of characteristics. Most presented ranking methods are able to rank fuzzy numbers with correct ranking order but there are certain situations where some ranking methods appear to have limitations particularly in ranking non - normal fuzzy numbers, non - overlapping fuzzy numbers and fuzzy numbers of different spreads. As to overcome these limitations, this research proposes a method of ranking fuzzy numbers using distance - based methods involving horizontal -x value, centroid, similarity measure, height and spread of fuzzy numbers. The proposed ranking method is applied to several benchmarking sets of fuzzy numbers for comparison purposes. As the outcomes, the proposed ranking method is found to have the ability on ranking trapezoidal, triangular and vertical line fuzzy numbers, producing correct ranking order for overlapping and non- overlapping case of fuzzy numbers, embedded fuzzy numbers, reflection case of fuzzy numbers and fuzzy numbers on the negative side. Furthermore, the proposed ranking method has also been applied on a real decision making problem faced by a company in Malaysia which is the Facilitators' evaluation in Social Security Organization (SOCSO). In this problem, the comparison between the original approach used by SOCSO and the proposed ranking method was made. The result shown that, using the proposed ranking method, a proper selection of facilitator has been made and this outcome does satisfy the committee members of SOCSO

TABLE OF CONTENTS

AUTH	OR'S DECLARATION	ii	
ABSTRACT			
AKNOWLEDGEMENT			
TABL	E OF CONTENTS	v	
LIST	OF TABLES	vii	
LIST	OF FIGURES	viii	
LIST	DF SYMBOLS	ix	
СНАР	TER ONE: INTRODUCTION	1	
1 1	Introduction	1	
1.1	Panking Fuzzy Numbers	2	
1.2	Davalopment of Distance Based Banking Mathad	2	
1.5	1.2.1 Controld Dead Dealing Mathed	5	
	1.3.1 Centroid – Based Ranking Method	5	
	1.3.2 Similarity Measure – Based Ranking Method	8	
	1.3.3 Spread – Based Ranking Method	10	
1.4	Problem Statement	12	
1.5	Research Question		
1.6	Objective of the Study	14	
1.7	Significance of the Study	14	
1.8	Scope and Limitation	15	
1.9	Organization of the Study	15	
1.10	Summary	15	
СНАР	TER TWO: PRELIMINARIES	17	
2.1	Basic Concepts of Fuzzy Set Theory	17	
2.2	Basic Fuzzy Operations	18	
2.3	Fuzzy Numbers and Its Operations	18	
2.4	Centroid of Fuzzy Numbers		
2.5	Similarity Measure		
2.6	Summary	32	
СНАР	TER THREE: A DISTANCE – BASED RANKING OF	22	
	FUZZY NUMBERS	33	
3.1	Development of the Proposed Distance - Based Ranking Method	33	
3.2	Implementation 37		
3.3	Validation and Benchmarking	42	
	3.3.1 Trivial Case	42	

3.3.1	Trivial Case	42
	3.3.1.1 Trivial Case 1	42
	3.3.1.2 Trivial Case 2	46
3.3.2	Discussion on Trivial Cases	48
3.3.3	Embedded Cases	48
	3.3.3.1 Embedded Case 1	48
	3.3.3.2 Embedded Case 2	49

		3.3.3.3 Embedded Case 3	50
	3.3.4	Result and Validation for Embedded Fuzzy Numbers	50
	3.3.5	Discussions on Embedded Cases	51
		3.3.5.1 Embedded Case 1	51
		3.3.5.2 Embedded Case 2	52
		3.3.5.2 Embedded Case 3	52
	3.3.6	Overlapping Cases	53
		3.3.6.1 Overlapping Case 1	53
		3.3.6.2 Overlapping Case 2	54
		3.3.6.3 Overlapping Case 3	54
	3.3.7	Result and Validation of Overlapping Fuzzy Numbers	55
	3.3.8	Discussions on Overlapping Cases	56
		3.3.8.1 Overlapping Case 1	56
		3.3.8.2 Overlapping Case 2	57
		3.3.8.3 Overlapping Case 3	57
	3.3.9	Non - Overlapping Cases	58
		3.3.9.1 Non - Overlapping Cases 1	58
		3.3.9.2 Non - Overlapping Cases 2	58
	3.3.10	Result and Validation for Non - Overlapping Fuzzy Numbers	59
	3.3.11	Discussions on Non - Overlapping Cases	60
		3.3.11.1 Non – Overlapping Case 1	60
		3.3.11.2 Non - Overlapping Case 2	61
3.4	Summa	ary	61
CHAF	TER FO	DUR: APPLICATIONS	62
4.1	Overvi	ew on Decision Making Environment	62
4.2	Implen	pentation of Ranking Fuzzy Numbers in Decision Making	
	Proble	ns	63
	4.2.1	Decision Making 1: Risk Evaluation 1	63
	4.2.2	Decision Making 2: Risk Evaluation 2	69
	423	Decision Making 3: Fuzzy Game Profit and Loss	74
4.3	Discus	sions on Decision Making Examples	79
4.4	Case S	tudy: Ranking Evaluation of Facilitators in SOCSO	80
	4.4.1	Problem Description	81
	4.4.2	Evaluation Form	81
	4.4.3	Data	82
4.5	Metho	dology	82
4.6	Implen	nentation	85
4.7	Summa	ary	93
CHAR	TED D	VE. CONCLUSIONS	04
CHAP	TERFI	VE: CONCLUSIONS	94
5.1	Conclu	loing Kemarks	94
5.2	Contrit	butions	96
5.5	Recom	mendation and Future work	96
REFE	RENCE	s	98
APPE	APPENDICES		