UNIVERSITI TEKNOLOGI MARA

TECHNICAL REPORT

THE APPLICATION OF INTERVAL-VALUED INTUITIONISTIC FUZZY ANALYTIC HIERARCHY PROCESS TO SOLVE CONTRACTOR SELECTION PROBLEM

P32S19

NUR AMIRAH BINTI MOHD AMIN (2017959541) NURFASYA ADDINA BINTI SAHARI (2017544911) NUR SYUHAILA BINTI ABDUL RASHID (2017736739)

Report submitted in partial fulfilment of the requirement for the degree of Bachelor of Science (Hons.) Mathematics Faculty of Computer and Mathematical Sciences

DECEMBER 2019

ACKNOWLEDGEMENT

In the name of ALLAH S.W.T, the most gracious and the most merciful with Selawat and Salam to Prophet Muhammad S.A.W. Alhamdulillah, thanks to ALLAH S.W.T for having blessed us with graces both in terms of health, mentally and physically strength throughout all of our lives. With the help and permission of Allah, all the initiatives and self-esteem in carrying out this project, we are given an opportunity to accomplish this technical report.

First of all, we would like to take this opportunity to express our gratitude to our supervisor, Pn Nor Faradilah Binti Mahad and our lecturer, En Azdi Bin Maasar for guidance and inspiration, including countless advice, ideas, moral support and encouragement throughout the successful completion of this project. A million gratitude to them for being so nice, compassionate and kind in dealing with our enquiries and difficulties during this semester and also not forget to provide us a lot of knowledge while carrying out this project. Last but not least, we would also like to thank all the UiTM residents, beloved friends, family and whoever that have directly or indirectly helped us in completing this project.

TABLE OF CONTENT

AC	KNOWLEDGEMENTi	
LIS	T OF TABLESiii	
LIST OF FIGURESv		
AB	STRACT vi	
CH	APTER ONE: INTRODUCTION	
1.1	Backgound of Study and Motivation1	
1.2	Problem Statement	
1.3	Objectives3	
1.4	Significance and Benefit of the Study3	
1.5	Scope of the Study3	
1.6	Limitations of the Study4	
1.7	Definition of Terms and Abbreviations4	
CH	APTER TWO: BACKGROUND THEORY AND LITERATURE REVIEW	
2.1	Analytic Hierarchy Process (AHP)5	
2.2	Fuzzy AHP7	
2.3	Intuitionistic Fuzzy AHP9	
2.4	Interval-Valued Intuitionistic Fuzzy AHP10	
2.5	Selection of Criteria	
2.6	Sensitivity Analysis	
2.7	Conclusion14	
	APTER THREE: METHODOLOGY	
	Steps Approach for Applying Interval-Valued Intuitionistic Fuzzy AHP15	
	Framework of Interval-Valued Intuitionistic Fuzzy AHP17	
	Implementation of Interval-Valued Intuitionistic Fuzzy AHP20	
	Senstivity Analysis	
	Conclusion34	
	APTER FOUR: RESULTS AND DISCUSSION	
	Overall Criteria's Relative Weight by Using IVIFAHP and AHP Method35	
	Overall Alternative's Relative Weight by Using IVIFAHP and AHP Method37	
	Relative Weight of Criterion after the Reduction of One of the Criteria39	
	Relative Weight of Alternative after the Reduction of One of the Criteria42	
	APTER FIVE: CONCLUSION AND RECOMMENDATION	
	Conclusion	
	Recommendation	
	RENCES	
APF	PENDICES A 51	

List of Tables

Table 1.1: Definition of Terms and Abbreviations	4
Table 2.1 : Preference Scale of AHP	6
Table 2.2 : Linguistic Variables for Importance of DMs	9
Table 3.1 : Conversion Preference Scale of IVIFN	.17
Table 3.2 : Linguistic Variables for the Improtance of DMs	.18
Table 3.3 : IVIFN Judgment Matrix of Criterion for Respondent 1, λ_1	.21
Table 3.4 : IVIFN Judgment Matrix of Criterion for Respondent 1, λ_2	.22
Table 3.5 : IVIFN Judgment Matrix of Criterion for Respondent 1, λ_3	.22
Table 3.6 : IVIFN Judgment Matrix of Criterion for Respondent 1, λ_4	.23
Table 3.7 : IVIFN Judgment Matrix of Criterion for Respondent 1, λ_5	.23
Table 3.8 : IVIFN Judgment Matrix of First Criterion	.25
Table 3.9 : Aggregated IVIFN Judgment Matrix of Criterion	.26
Table 3.10: IVIFN Entropy Weights of Criterion for Respondent 1, λ_1	.26
Table 3.11: IVIFN Entropy Weights of Criterion for Respondent 1, λ_2	.27
Table 3.12: IVIFN Entropy Weights of Criterion for Respondent 1, λ_3	.27
Table 3.13: IVIFN Entropy Weights of Criterion for Respondent 1, λ_4	.27
Table 3.14: IVIFN Entropy Weights of Criterion for Respondent 1, λ_5	.27
Table 3.15: IVIFN Final Entropy Weights of Criterion for Respondent 1, λ_1	.28
Table 3.16: IVIFN Final Entropy Weights of Criterion for Respondent 1, λ_2	.28
Table 3.17: IVIFN Final Entropy Weights of Criterion for Respondent 1, λ_3	.28
Table 3.18: IVIFN Final Entropy Weights of Criterion for Respondent 1, λ_4	.28
Table 3.19: IVIFN Final Entropy Weights of Criterion for Respondent 1, λ_5	.28
Table 3.20: Relative Weights of Contractor Selection for Respondent 1, λ_1	.29
Table 3.21: Relative Weights of Contractor Selection for Respondent 1, λ_2	.29
Table 3.22: Relative Weights of Contractor Selection for Respondent 1, λ_3	.29
Table 3.23: Relative Weights of Contractor Selection for Respondent 1, λ_4	.29
Table 3.24: Relative Weights of Contractor Selection for Respondent 1, λ_5	.30
Table 3.25: Final Relative Weight and Rank on Criterion	.30
Table 3.26: Final Relative Weight and Rank on Alternatives	.30
Table 3.27: Final Relative Weight and Criteria after the Reduction of C1	.31
Table 3.28: Final Relative Weight and Alternatives after the Reduction of C1	.31
Table 3.29: Final Relative Weight and Criteria after the Reduction of C2	.32
Γable 3.30: Final Relative Weight and Alternatives after the Reduction of C2	.32
Γable 3.31: Final Relative Weight and Criteria after the Reduction of C3	.32
Γable 3.32: Final Relative Weight and Alternatives after the Reduction of C3	. 33
Table 3.33: Final Relative Weight and Criteria after the Reduction of C4	.33
Table 3.34: Final Relative Weight and Alternatives after the Reduction of C4	.33

ABSTRACT

In the manufacturing companies, a contractor company plays a critical role in repairing and the operation of the equipment. It is very important for businesses to choose a professional contractor to carry out the maintenance project in order to run their businesses smoothly. Nonetheless, it is a difficult problem since the choice of contractors is generally a question of multi-criteria group decision-making involving multiple competing parameters on which the information of decision-makers is normally ambiguous and imprecise. This paper used the method of Interval-Valued Intuitionistic Fuzzy Analytic Hierarchy Process (IVIFAHP) to solve contractor selection problem, making a comparison of the result with Analytic Hierarchy Process (AHP) method and the sensitivity were analyse in decision making which results in the selection of the potential contractor. To improvise the lacking in AHP method, the developed IVIFAHP method offers a more accurate judgment as it takes the importance of the Decision Makers (DMs) and also the uncertainty associated with the process of making the decision. Data were collected through an interview with a company's representative and a set of questionnaires was distributed to DMs. Five criteria consist of price incurred in maintenance project (C1), past performance of the contractor (C2), technical skills (C3), availability (C4) and financial stability (C5) of the contractor are taken into consideration in order to choose a contractor from a list of alternatives (A₁, A₂, A₃ and A₄). According to the criteria preferences, the most preferred contractor, A4 has come up as the first alternative to be chosen compared to the other three alternatives. Besides that, by applying the sensitivity analysis in this study, the technical skills (C₃) is the criterion that has least differences between actual relative weight and approximate relative weight after reducing other criteria. Eventually, IVIFAHP method are more preferable than AHP method because it includes the degree of importance of DMs and deals with the vagueness and uncertainty of the human judgement in the process of selecting the best contractor for the company.