UNIVERSITI TEKNOLOGI MARA

TECHNICAL REPORT

A STUDY ON SINGLE SERVER AND MULTI SERVER FUZZY QUEUING MODEL AND QUEUING THEORY MODEL

P13M19

MUHAMMAD ALIF HAIKAL BIN NOR AZMAN (2017412328)

NURUL LATIFAH BINTI RAMLI (2017412434)

NURAZIMAH BINTI MAHARUDIN (2017412416)

Report submitted in partial fulfilment of the requirement for the degree of

Bachelor of Science (Hons.) (Management Mathematics)

Faculty of Computer and Mathematical Sciences

JULY 2019

AKNOWLEDGEMENT

First and foremost, we are very grateful to the Almighty ALLAH S.W.T for letting us to finish our final year project. We are also glad that we can finish our project on time with ease.

Here, we wish to express our sincere appreciation to our supervisor Madam Noor Hidayah Binti Mohd Zaki for encouragement, guidance, suggestions and critics throughout finishing this project. We are also thankful for every kindness that she gave to us throughout these two semesters.

Special thanks to the managers for both cinemas which are TGV Cinemas Aeon Seremban 2 and GSC Cinemas Palm Mall Seremban for giving us the permission to observe the system for the food counter in each cinema. We are thankful for the kindness and help from the staffs of both cinemas.

Most importantly, special thanks also to our family and friends for their external supports to finish this project. Without their supports we cannot finished our project on time.

AKNOWLE	CONTENT EDGEMENT	i
	GURES	
LIST OF TA	ABLES	iv
ABSTRACT	Γ	. V
CHAPTER	ONE	. 1
1.0 INT	RODUCTION	. 1
1.1 NA	TURE	. 1
1.2 PRC	DBLEM STATEMENTS	.3
1.3 RES	SEARCH OBJECTIVES	.3
1.4 SIG	NIFICANCE AND THE BENEFIT OF THE PROJECT	.3
1.5 SCC	OPE OF THE PROJECT	.4
1.6 DEF	FINITION TERMS AND CONCEPT	.4
CHAPTER 7	TWO	. 7
2.0 BAG	CKGROUND THEORY AND LITERATURE REVIEW	.7
2.1 BAC	CKGROUND THEORY	.7
2.1.1	Queuing Theory Model	.7
2.1.2 1	Fuzzy Queuing Theory	.8
2.2 LIT	ERATURE REVIEW	.9
2.2.1 I	Fuzzy Queuing Theory	.9
	The differences between Fuzzy Queuing Model (FQM) with Queuing y Model (QTM).	10
2.2.3	Application of Queueing Theory.	11
CHAPTER	ГНКЕЕ	13
3.0 ME	THODOLOGY AND IMPLEMENTATION	13
3.1 CH	ARACTERISTIC OF QUEUING SYSTEM	13
3.1.1 \$	System	13
3.1.2	The arrival pattern in the system	13
3.1.3	Service rate in the system	13
3.1.4	The Queue Discipline	13
3.1.5	System Capacity	13
3.1.6	Queue behaviour	13
3.2 ME	THODOLOGY	14
	OW IN COMPUTING PERFORMANCE MEASURES OF QUEUING	18

3.3.1 Analyze Input Parameter	19
3.3.2 Queuing Theory Model	19
3.3.3 Fuzzy Queuing Model	21
CHAPTER FOUR	26
4.0 IMPLEMENTATION	26
4.1 CALCULATION FOR ARRIVAL RATE, λ AND SERVICE RATE, μ	26
4.1.1 Arrival rate, λ and service rate, μ for single server	26
4.1.2 Arrival rate, λ and service rate, μ for multi-server	27
4.2 CALCULATION FOR PERFORMANCE MEASURES OF QUEUING THEORY MODEL	28
4.2.1 Calculation for performance measures of Queuing Theory Model for Single server	28
4.2.2 Calculation for performance measures of Queuing Theory Model for Multi server	
4.3 CALCULATION FOR PERFORMANCE MEASURES OF FUZZY QUEUING MODEL	31
4.3.1 Calculation for steps in DSW Algorithm and performance measures of Fuzzy Queuing Model for Single server	
4.3.1.1 Calculations for steps in DSW Algorithm for single server	31
4.3.1.2 Calculation for performance Measures of Fuzzy Queuing Model for single server	
4.3.2 Calculation for steps in DSW Algorithm and performance measures of Fuzzy Queuing Model for Multi – Server	
4.3.2.1 Calculation for steps in DSW Algorithm for multi-server	
CHAPTER FIVE	45
5.0 RESULTS AND DISCUSSION	45
5.1 PERFORMANCE MEASURES FOR QUEUING THEORY MODEL	45
5.1.1 Performance measures for single server	45
5.1.2 Performance measures for multi-server.	46
5.2 PERFORMANCE MEASURES OF FUZZY QUEUING MODEL USING DSW ALGORITHM	
5.2.1 Single server	47
5.2.2 Multi-server	49
CHAPTER SIX	53
6.0 CONCLUSION AND RECOMMENDATION	53
REFERENCES	54

ABSTRACT

People always need to face with a long queue and waiting for a long time to be served. Usually, in the peak hours such as 12 p.m. until 2 p.m., 6 p.m. until 10 p.m. are always full of people and the long queue continues until the peak hours end. It can lead to dissatisfaction of customers. By comparing Fuzzy Queuing Model and Queuing Theory Model which model is the best model to get the better service performance. The purpose of this study is to investigate the service performance of cinema using fuzzy queuing model. This study suggests several research objectives to be attained which are to compute service performance using Fuzzy Queuing Model for single server and multiserver. Other than that, is to compare service performance between Fuzzy Queuing Model and Queuing Theory Model. The method that we used in this study are Queuing Theory Model and Fuzzy Queuing Model which is DSW algorithm to get the required variables. The data was collected manually at GSC Cinemas Palm Mall Seremban and TGV Cinemas, Aeon Seremban 2. The values of arrival rate, λ and service rate, μ were obtained by calculation with using Queuing Theory Model and Fuzzy Queuing Model. For future observation, other researcher can compare single server for both methods to know which method the best method in maximize the service performance and minimize the service time.

Keywords: Queuing Theory Model, Fuzzy Queuing Model, DSW Algorithm, Multiserver and Single-server queuing system.