UNIVERSITI TEKNOLOGI MARA

TECHNICAL REPORT

OPTIMIZATION OF ALLOCATION OF DRIVERS IN TRANSPORTATION USING LINEAR PROGRAMMING

P4M19

NURUL AQILAH BINTI HAMIDI (2016299142) NUR SHAHIRAH BINTI SIDEK (2016299104) NUR FARAH ALISSA BINTI AZMI MURAD (2016299216)

Report submitted in partial fulfilment of the requirement for the degree of Bachelor of Science (Hons.) Computational Mathematics Faculty of Computer and Mathematical Sciences

JULY 2019

ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

Firstly, we are grateful to Allah S.W.T for giving me the strength to complete this project successfully.

We would like to express our utmost gratitude to Mrs Busyra Latif. Without her guidance and advices, we would not be able to finish this research paper by ourselves. We perceive this opportunity as a milestone for us in our educational advancement as it gives us a clear understanding on how we should do the research. Not only that, this project also will definitely be helpful for our future work. We also would like to express our appreciation to our friends especially our classmates and not to forget our family.

TABLE OF CONTENTS

	CKNOWLEDGEMENTSABLE OF CONTENTS	
	ST OF TABLES	
	ST OF FIGURES	
AL	BSTRACT	V
1.	INTRODUCTION	
	1.1 Background of Study	
	1.2 Problem Statement	
	1.3 Objectives	
	1.4 Scope of Project	
	1.5 Significance of Project	
	1.6 Definition of Terms and Abbreviation	11
2.	BACKGROUND THEORY AND LITERATURE REVIEW	12
	2.1 Background of Linear Programming	12
	2.2 Application of Linear Programming	14
	2.2.1 Linear Programming in Scheduling	
	2.2.2 Linear Programming in Transportation Scheduling	
3.	METHODOLOGY AND IMPLEMENTATION	17
	3.1 Methodology	17
	3.2 Description of Data	
	3.3 Allocation of Bus Driver	
94	3.4 Linear Programming Model	
	3.5 Model Implementation	
	3.5.1 Problem 1	
	3.5.2 Problem 2	
	3.6 Linear Programming using LINGO 18.0	
4.	RESULTS AND DISCUSSION	25
٠.	4.1 Results and discussion.	
	4.2 Validation	
_		
5.		
5.	5.1 Conclusions	30
5.		30
	5.1 Conclusions	30 30

LIST OF TABLES

Table 1: Summary of Applications of Linear Programming	16
Table 2: The Number of Assigned Bus Drivers for Each Day	18
Table 3: The Number of Assigned Bus Drivers in Each Shift	18
Table 4: The Allocation of Bus Drivers in a Week	
Table 5: The Description of Variables in a Week	19
Table 6: The Allocation of Bus Drivers in a Day	20
Table 7: The Description of Variables in a Day	20
Table 8: The Value of Each Variable	25
Table 9: The Allocation of Bus Drivers in a Week	25
Table 10: The Optimal Number of Bus Drivers using LINGO 18.0 Software	26
Table 11: The Optimal Value of Bus Drivers for Each Shift	26
Table 12: The Number of Bus Drivers for Each Shift using LINGO 18.0 Software	27
Table 13: The Optimal Number of Bus Drivers using LINGO 18.0 Software	28
Table 14: The Number of Assigned Bus Drivers for Each Day	28
Table 15: The Number of Bus Drivers for Each Shift using LINGO 18.0 Software	
Table 16: The Number of Assigned Bus Drivers in Each Shift	
A ACT OF PLCANES	
LIST OF FIGURES	
Figure 1: Flowchart of Methodology	17

ABSTRACT

The scheduling of workers is very important in any organization. In addition, proper scheduling of workers will enhance the outcome of the company. In this paper, the scheduling of drivers for a bus company in Segamat, Johor is considered. By using linear programming, the objectives of this research which are the allocation of number of bus drivers needed in each day for a week and each shift in a day was calculated. In this study, the problems were executed using LINGO 18.0 software. Here the constraints considered include the minimum number of bus drivers required for each day and in each shift, number of days the bus drivers should be working in a week and the amount of shift that the bus drivers need to cover for each day. The optimal number of bus drivers for each day in a week and each shift in a day was obtained after executed using LINGO 18.0. The result obtained is then validated by comparing the result with the actual datas collected from the bus company in which the result fulfils the company's requirements.