UNIVERSITI TEKNOLOGI MARA

ANTIFUNGAL STUDY of Lawsonia inermis AND Tamarindus indica LEAVES ON SKIN DERMATOPHYTES FUNGUS (Trichophyton rubrum)

MONISHA BINTI ADAM GAJEN

Thesis submitted in fulfillment of the requirements for the degree of **BACHELOR OF SCIENCE (Hons.) BIOLOGY**

Faculty of Applied Sciences

July 2019

AUTHOR'S DECLARATION

I hereby declare that this thesis entitled "Antifungal Study of *Lawsonia inermis* and *Tamarindus indica* Leaves on Skin Dermatophytes Fungus (*Trichophyton rubrum*)" submitted in this dissertation was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and independent work done by me, during the period of September 2018 until July 2019 unless otherwise indicated as reference work for further completion of thesis. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I hereby acknowledged that I have been supplied with the Academic Rules and Regulations for Bachelor of Science (Hons.) Biology, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Monisha Binti Adam Gajen
Student ID No.	: 2016565751
Programme	: Bachelor of Science (Hons.) Biology - AS201
Faculty	: Faculty of Applied Sciences
Dissertation Title	: Antifungal Study of Lawsonia inermis and Tamarindus
	indica Leaves on Skin Dermatophytes Fungus
	(Trichophyton rubrum)

Signature of Student	:
Date	: July 2019

ABSTRACT

Ringworm skin disorder or dermatophytosis is a common skin problem that affect humans and animals. In present times, there have been various antifungal treatments that have been used in treating this problem. However, Trichophyton rubrum fungi has developed a resistance towards most antifungal drugs that are expensive and may cause side effects in the long run. Therefore, this study focuses on combating dermatophytosis which is caused by fungi known as Trichophyton rubrum by the usage of medical plant which are Lawsonia inermis (Henna) and Tamarindus indica (Tamarind) leaves. Both of these are believed to have potential in antifungal effects, economical and safer to be commercialized as an antifungal agent. The objectives of this study are to compare both L. inermis and T. indica effectiveness on different concentrations such as 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.625 mg/mL and 0.3125 mg/mL against T. rubrum as well as to determine the toxicity of both leaves extract. Besides, the method applied in this study for plant extraction is by using maceration and soaking method using 80% ethanol. The in-vitro antifungal assay was carried out by disc diffusion method. Result obtained indicated that Henna (20.80±6.77 mm) showed better antifungal reaction compared to Tamarind (15.07±5.09 mm). Whereas for positive control Itraconazole (23.33±7.90 mm) showed greater antifungal reaction compared to Fluconazole (17.60±8.85 mm). One major trend found in this study was the higher the concentrations (mg/mL) applied for all four groups of Henna, Tamarind, Fluconazole and Itraconazole, the higher the diameter zone inhibition (mm). Furthermore, toxicity assay result have showed least toxic effect on Tamarind at 43.33% mortality of nauplii followed by Henna at 56.67% mortality of nauplii. However, the mortality percentage were found to be increased as concentration increased for all treatments. In conclusion, it is believed that L. inermis and T. indica crude extract that have been tested have a great potential in antifungal effect against dermophytes of T. rubrum and it could be taken as measure in developing new antifungal treatment in order to fight ringworm skin disorder.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiii
LIST OF NOMENCLATURES	xiv

СН	APTER ONE: INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of Study	4
1.4	Objectives	5

6

6

22

CHAPTER TWO: LITRETURE REVIEW 2.1 Skin Disease

	2.1.1 Fungal Infection on Human Skin	7
	2.1.2 Dermatophytosis (Ringworm Skin Disorder)	7
	2.1.2.1 Mechanism of Dermatophytosis	8
	2.1.3 Classification of Dermatophytosis	9
2.2	Dermatophytes Involved in Ringworm Skin Disorder	11
	2.2.1 Trichophyton rubrum	12
2.3	Lawsonia inermis (Henna Leaves)	14
2.4	Tamarindus indica (Tamarind Leaves)	18

CHAPTER THREE: METHODOLOGY

3.1 Materials	22
3.2 Chemicals	22
3.3 Apparatus	22
3.4 Preparation for Extraction of Lawsonia inermis (Henna) and Tamarindi	
(Tamarind) Leaves	23
3.4.1 Plant Sample Preparation	23
3.4.2 Plant Sample Extraction	23
3.5 Preparation of Culture Media	24
3.6 Fungal Isolation and Identification	24
3.7 Fungal Culture and Storage	25
3.8 Preparation of Fungal Inoculum	25
3.9 In-vitro Antifungal Assay Activity	26
3.10 Toxicity Test on Lawsonia inermis (Henna) and Tamarindus indica	
(Tamarind) Leaves Extract	27
3.11 Statistical Analysis	28
3.12 Flow Chart	29
3.13 Safety Operating Procedure for Working with <i>Trichophyton rubrum</i>	30
CHAPTER FOUR: RESULTS AND DISCUSSIONS	33
4.1 Extraction of Lawsonia inermis (Henna) and Tamarindus indica (Tamarind	l)
Leaves	33
4.2 Identification of Fungi	35
4.3 In- vitro Antifungal Assay Activity Against Trichophyton rubrum	36
4.3.1 Interaction between Plant Extract and Trichophyton rubrum	40
4.3.2 Interaction between Antifungal Drugs and Trichophyton rubrum	42
4.4 Toxicity Test on Lawsonia inermis (Henna) and Tamarindus indica (Tamar	rind)
Leaves Extract	46
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	50
REFERENCES	52
APPENDICES	68
AUTHOR'S PROFILE	82