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ABSTRACT 

 

In this paper, a technique using relationships between the coefficient vectors 

of the differential equation solutions is extended  to calculate the five lowest 

forward and backward whirling speeds of a multi-disk shaft system. To this 

end, the vertical and horizontal components of transverse vibrations are 

analysed using the Bernoulli-Eulerbeam model, including the gyroscopic 

effect of each disk. The aforementioned relationships obtained from the 

continuity  equation and the equilibrium equations, when written in matrix 

form and compared to the conventional transfer matrices related to the state 

vector, present an advantage that reduces the number of multiplied matrices, 

when adjacent shaft segments have the same material properties and/or 

diameters. The associated whirling mode shapes are determined using the 

algebraic complements according to I.P. Natanson. The good agreement via 

a comparison between the obtained results and those available in the 

literature shows the efficiency and the accuracy of the presented method. 

 

Keywords: shaft segment; vibration; constant coefficient vector; transfer 

matrix. 

 

 

Introduction 
 

The increasing demand for rotating machinery subjected to wide range of 

speed changes requires an accurate determination of higher critical speeds. 

Many research papers have studied the dynamics of rotating machinery. In 

the first published work on the dynamics of rotating shafts presented by 

Rankine [1], the term whirling is introduced to mechanical engineering 
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practice. Dunkerley [2] published test results of rotor motion driven by belt 

transmission. He notices that under the slight unbalance its axis deviates from 

the bearing line to the point determined by a particular speed. After crossing 

it, the deviation amplitude decreases. According to Nelson [3], Dunkerley is 

the first who introduced the term “critical speed” to mechanical engineering. 

Green [4] considered the gyroscopic effect on critical speeds of flexible 

rotors using a lumped parameter system representation. Among other works 

devoted to whirling phenomenon, Eshleman and Eubanks [5] presented an 

analytical method for whirling speeds of a rotating shaft  carrying  "one"  

disk, Jun et al. [6] analysed the bending vibration of multi-stepped shaft 

using Timoshenko beam  model including the gyroscopic effect due to a shaft 

rotation. Jong-Shyong Wu et al. [7] proposed an analytical solution for 

whirling speeds and mode shapes of a multi-disk shaft system, substituting 

the effect of each rigid disk by a lumped mass together with a frequency-

dependent equivalent mass moment of inertia, and they compared the 

obtained numerical results using both analytical method and finite element 

method (FEM). In [7], the natural frequencies with their associated mode 

shapes and the whirling speeds are determined, however, the associated 

"whirling mode shapes" are not presented. In [5]-[7], the equations of vertical 

and horizontal vibrations of each shaft cross-section are combined to form 

one partial differential equation in a complex number and then the motion 

equation, the continuity equations, the equilibrium equations, and the 

associated boundary conditions are obtained in terms of the complex 

numbers.  

Surovec et al. [8] investigated coupled torsional vibrations of rotating 

machine by means of Föppl-Jeffcott rotor to find a mathematical model, and 

to determine the natural frequency for both cases of damped and undamped 

free vibrations. Spagnol J. P. et al. [9] have applied Lagrangian mechanics 

and partial differential equations to develop an analytical model for the 

purpose of early fault-detection in rotor-bearing systems, with both 

symmetric and asymmetrical properties. Moradi Tiaki et al. [10] studied 

primary resonances of an overhung rotor taking into account rotary inertia 

and gyroscopic effects, using the multiple scales method to the discretized 

differential equations of motion. The transfer matrix method (TMM), for 

convenience, was introduced by Myklestad in 1944 and generalized by Prohl 

in 1945. In the field of rotor dynamics, the (TMM) has been widely applied 

both for eigen and response analysis. Lund et al. [11] extended the (TMM) 

for calculating the elliptical whirl orbits of a rotor, by including anisotropic 

characteristics of the fluid film bearings, which couple rotor motions in 

horizontal and vertical directions. Murphy et al. [12] developed a polynomial 

transfer matrix method to find all eigen values (critical speeds), which 

improved the (TMM) for eigen value calculations without missing any mode. 

In the present paper, a shaft with symmetric properties in stiffness and 

inertia, carrying three rigid disks, and mounted on ball bearings used by 
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Jong-Shyong Wu et al. [7], is considered. The Bernoulli-Euler beam theory is 

used to describe the field properties of the shaft, in the case of a linear system 

including gyroscopic effect. The rotary inertia and transverse shear of the 

shaft are negligible when compared to the gyroscopic effects of the disks [5]. 

The transfer matrices related to the coefficient vectors of differential equation 

solutions are extended here to calculate natural frequencies and critical 

whirling speeds. The theory of this approach applied to forced vibrations of 

shafting system is proposed by Kolenda J. [13, 14]. In [15], this technique is 

used to analyse the forced axial and torsional vibrations of a real ship shaft 

line. This approach presents an advantage compared to the well-known 

(TMM) related to the state vector, it reduces the number of multiplied 

matrices, when adjacent shaft segments have the same material properties 

and/or diameters. The mode shapes corresponding to the natural frequencies 

and critical whirling speeds are computed using algebraic complements 

according to I.P. Natanson [16]. 

 

 

Physical Model of Multistep Shaft-Disk System 

 

Physical model of shaft-disk system is shown in Figure 1. It concerns a 

multistep shaft carrying a rigid disk, with its two ends supported by ball 

bearing. The system is divided into series of n uniform shaft segments. The 

division is made at the section joining two shaft segments which have 

different constants of material or/and diameters, and at the section passing 

through the centre of gravity of discrete mass (disk i) joining two shaft 

segments (i) and (i+1) 

 
 

 

 
 
 
  

Figure 1: Physical model of the analyzed system. 
 

It is assumed that the system is linear, and that each disk i represents a 

discrete mass. For each shaft segment (i), it is adopted a fixed coordinate 

system ( ,  ,  )i i ix y z whose axes are respectively parallel to the axes of the fixed 

reference system ( ,  Y,  Z)X . If the gyroscopic effect in the shaft is not 

considered, the differential equations governing transverse vibrations of the 

ith shaft segment are uncoupled and given by: 
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where iE  is the modulus of elasticity  2/ ,N m
iS
 
the cross-sectional area 

 2 ,m
iI  the diametric moment of inertia  4m  of the ith shaft segment, and

i

is the density of the shaft material  3/ ,kg m  while ,y iu  is the vibration for 

the centroid of the cross-section of the ith shaft segment in the vertical 

direction ( )y , at axial coordinate ix x
 

and time t, ,z iu
 

denotes the 

transverse vibration in horizontal direction (z). For free vibrations: 

 

, ,( , ) ( ) j t
y i y iu x t u x e 



                                                                                
(2a)                                                                                                                                                                 
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with 1j   , while, , ( )y iu x and , ( )z iu x  are the shape functions of the 

vibrations and   is the natural frequency of the shaft-disk system. The upper 

sign ( ) and lower sign ( ) are for the forward and backward whirls, 

respectively. Substituting Equations (2a) and (2b) into Equation (1a) and 

(1b): 
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1/41/2  /  .i i i i iS E I      

The slopes are: 
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If designate  , , , ,, , ,i y i z i y i z iu u u   as the vibration vector, will have: 

 

( ) j t
iiu u x e 



                                                                                                 (5) 

 
Real part of this vector can be written in the form: 

 

( ) ( ) i i iu x C x a                                                                                                  (6)      
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while,  1 2 8,  ,...,i i i ia a a a  is the vector of solution coefficients for the ith 

shaft segment. Internal forces and moments are: 
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, ( , )y iT x t and , ( , )z iT x t are the shear forces in the y and z directions, 

respectively. The subscripts i and x  refer to the ith shaft segment and its 

section, respectively. ,z iM
 
and ,y iM

 
are the bending moments in the vertical 

and horizontal planes. Taking into account Equation (5), these internal forces 

and moments can be expressed as: 
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 , , , ,, , ,i y i z i y i z ip T T M M
 
is the vector of internal forces and moments: 

 

 
( ) i i

j t
p p x e





                                                                                               

(9) 
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The matrices ( )iC x  and ( )iD x
 

are written in the appendix. With the 

assumption that the shaft is simply supported in bearings at both ends, the 

boundary conditions are: 
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Transfer Matrices Related to Solution Coefficients 
 

The case of shaft segments with different diameters (and/ or) 
different material properties 

A model of two adjacent shaft segments is illustrated in Figure 2. iL L

denotes the length of the ith shaft segment: 
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Figure 2: Schematic illustration of displacements and internal forces 

(moments) acting at the junction of two adjacent shaft segments (i) and (i+1). 

 

At the junction of two shaft segments having different constants of 

material or/and diameters, the continuity equations for the deformations, and 

the equilibrium equations are: 
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Taking into account Equation (6) and (10), Equation (12) and Equation (13) 

can be written as: 
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The matrix iB can be considered as a transfer matrix related to the solution 

coefficients, which has a block diagonal form (see appendix). For the 

( 1)s  following shaft segments, the following relationship is derived: 
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In these calculations, the number of multiplied matrices in Equation (17) may 

be large, however, the matrices iB
 
have an advantageous convenience, when 

the shaft segments have the same material constants and diameters, and the 

Equation (17) is reduced to: 

 

 ,i s i ia G a                                                                  (18)                                                                                                                                                                

 

where the matrix iG  is obtained from the matrix iB
 
by setting: 
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(i.e. the multiplication of this type of transfer matrices in the case listed 

below, can be replaced by a summation of function arguments occurring in 

these matrices). This convenient property of presented approach does not 

exist with the well-known transfer matrices related to the state vector. An 

adoption of a linear model of internal damping in shafts does not eliminate 

the property of the presented method. 

 
A case of a discrete mass (disk i) joining two shaft segments (i) 
and (i+1) 
A case of simultaneous movements of whirling and spinning of a disc is 

shown in Figure A1 in the appendix. Figure 3(a) and Figure 3(b) show a case 

where two adjacent shaft segments (i) and (i+1) rotating with spin speed 

and joined by a discrete mass im (disk (i)), with inertia matrix iM , on the 

vertical and horizontal planes, respectively. 
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Figure 3:  Forces and moments acting on rigid disk i joining two shaft 

segments (i) and (i+1) on (a) the xy -plane, and (b) the xz -plane. 
 

The components of the angular speed are: 

 

, ,sin ( , )  ( , )y z i i z i iL t L t                                              (20a)                                                                                                                                                                 

, ,sin( ( , )) ( , )z y i i y i iL t L t                                           (20b)   

 

Under the assumption that the displacements are small and the centre 

of gravity of the disk i is coincident with the centroid of the cross-section of 

the shaft segment, the following conditions are verified: 
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where ,d iJ and ,p iJ  are the diametric and polar mass moments of inertia of the 

disk i, respectively. The gyroscopic moments of the disk i couple the 

equilibrium equations for the moments (23a) and (23b). Substituting 

Equation (20a) and (20b) into Equation (23a) and (23b), respectively, and 

get: 
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2
, , , , , , 1( )   ( )    ( ) (0)y i d i y i p i z i y iM L J L jJ L M        

                                      
(24a) 

2
, , , , , , 1( )   ( )    ( ) (0)z i d i z i p i y i z iM L J L jJ L M        

                                             
(24b) 

 

Introducing Equation (7a) and (7b) into Equation (22a), (22b), (24a) 

and (24b), and taking into account Equation (6), (8a) and (8b), the continuity 

equations for the vibrations and the equilibrium equations for the forces (and 

moments) can be written as: 
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Equation (25b), (25c), (25d) and (25e) can be written in the following matrix 

form: 
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The matrices ( )iS L  and iM are given in the appendix, while: 
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According to Equation (25a), (26) and (27): 
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iH is a transfer matrix related to the vector of solution coefficients ,ia

through the disk i,  taking into account its gyroscopic effect. Using the above 

derived transfer matrices, it can determine the vectors of solution coefficients

2 3,  ,..., na a a for the vibrations from the second to the nth shaft segments, as 

function of 1a , which is the solution coefficient vector for vibrations of the 

first shaft segment. As an example, for the system illustrated in Figure 2, the 

following relationships are obtained: 
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The boundary conditions at the left and right pinned ends  

Finally, the boundary conditions (11a) and (11b) can be written respectively 

as: 

1 1 (0) 0Q a                                                                                                    (31a) 

 ( ) 0n n nQ L a                                                                                                 (31b) 

 

The matrices 1(0)Q  and ( )n nQ L are written in the appendix. Substituting the 

relationships (30) into Equation (31a) and (31b), the resulting expressions 

can be written in the following matrix form: 

 

 1
1

1 3 2 1

(0)
0

( ) ...n n n

Q
a

Q L B H B B

 
 

 
                                                                  (32)

  

thus, the boundary conditions (11a) and (11b) are expressed as a function of 

 1a , which is the constant coefficient column vector (8 x 1) of free vertical 

and horizontal vibrations of the first shaft segment (i=1): 

 

   1 11 12 13 14 15 16 17 18,  ,  ,  , ,  ,  ,  
T

a a a a a a a a a                                      (33)

 
 

According to Equation (32), the vector of constant coefficients  1a  verify 

the following equation: 

 

 1 1 0D a                                                                                                  (34)

 
 

where, 

11 12 18

121
1

1 3 2 1

81 88

...

Q (0)...

Q (L ) ....

...
n n n

d d d

d
D

B H B B

d d


 
   

    
  

  


                                        (35)    

 

Equation (34) represents the characteristic equation for the vibrating system. 

Non-trivial solution for the vector of constant coefficients 1a , requires that: 
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1 0D                                                                                                          (36)

 
which is the frequency equation. Natural frequencies  r  of the non-

rotating system and critical whirling speeds  r may be obtained by solving 

the eigenvalue Equation (36), for  0  and  r , respectively. For 

that, a technique used here, is that if the “product” for the values of the 

coefficient determinants ( )k  and 1( )k  is less than or equal to zero 

(i.e., 1( ) ( ) 0k k     ) with 1k k     , then the corresponding 

natural frequency r  is determined by the obtained value 0.5k   .In the 

case of critical speed r , the matrix 1D  is complex and a similar technique is 

used. 

Because the matrix 1D is singular, the vector  1a  in Equation (34) 

can be estimated up to a multiplicative constant [16]: 

11 11 12 12 13 13 18 18,     ,   ,...,  a g a g a g a g                               (37) 

 

where 1 (  = 1,...,8)g  
 

are the algebraic complements of corresponding 

elements 1 (  = 1,...,8)d    of the matrix 1D . 

 

11g = 

22 23 28 21 22 27

32 31
18

82 88 81 87

... ...

... ...
,..., 

. .

... ...

d d d d d d

d d
g

d d d d


  

                       (38) 

 

Thus,   

,1 11 1 12 1 13 1 14 1( ) cos sin cosh sinhyu x g x g x g x g x      
             

(39)                    

,1 15 1 16 1 17 1 18 1( ) cos sin cosh sinhzu x g x g x g x g x                    (40) 

with, 

 1 11 12 18,  ,  ..., .g g g g  

 

The functions (39) and (40) represent the mode shapes of vertical and 

horizontal vibrations, respectively, of the first shaft segment. The resultant of 

these functions represents the transverse mode shape. For the second shaft 

segment:

 
,2

2 2 2
,2

( )
( ) ( ) g

( )

y

z

u x
u x C x

u x

  
  
  

                                                                    (41) 
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with, 

 2 21 22 28,  ,  ..., .g g g g  

 

Based on Equation (30), the relationships for the rest of shaft segments are: 

 

2 1 1 g ,g B  

3 2 2 2 1 1 g g  g B B B   

4 3 3 3 2 1 1 g gg H H B B                                                                     (42) 

1 1 1 2 3 2 1 1

...

 g ... gn n n n ng H H H H B B      

where, 

 1 2 8,  ,  ..., .i i i ig g g g
 

 

 

Description of the Analysed System 
 

A shaft carrying three identical rigid disks as shown in Figure 4 is studied.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Analysed multi-disk shaft system. 

 

Each disk with thickness of 0.004 ,h m  diameter of  0.36 dd m  

connected by four distributed shaft elements each with length of = 0.30 iL m  

and diameter 0.02 sd m , Young's modulus
11 22.068 10  /E N m , and the 

mass density for the disk (or shaft) material is
37850 /d s kg m   . This 

example is considered in [7], where the lowest five natural frequencies, 

natural mode shapes and whirling speeds are calculated. 
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The eigen value Equation (36) is solved using a developed program 

with the assistance of MATLAB. It is to be noted that the vibration Equations 

(1a) and (1b) do not contain any term likely to limit the amplitudes of free 

vibrations. For that, the obtained mode shapes using the algebraic 

complements according to I. P. Natanson [16] are normalized such that the 

maximum value of each mode is equal to unity. Table 1 shows the lowest five 

natural frequencies obtained from the presented method for the non-rotating 

system  0  . The associated natural mode shapes of vertical and horizontal 

vibrations, shown in Figures (5-9) are the same since governed by the similar 

differential Equations (1a) and (1b), due to the assumption that the shaft has 

symmetric properties in stiffness and inertia. The resultant natural transverse 

mode shapes are plotted in Figures 10-14.  

 

Table 1: The lowest five natural frequencies 1 5   (with 0 ) for the 

analysed system (see Figure 4) obtained from the presented method and those 

obtained using FEM in [7] 

 

Mode                   Natural frequencies ( / )r rad s  (with 0 ) 

Presented study                       FEM in ref. [7] 

1
st
 75.39731 75.3973 

2
nd

 290.86410                               290.8641 

3
rd

 611.95860                                611.9586 

4
th

 958.47733                                958.4773 

5
th

 1288.89180                              1288.8920 
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Figure 5: The first natural mode 

shape of vertical or horizontal 

flexural vibrations. 
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Figure 6: The second natural mode 

shape of vertical or horizontal flexural 

vibrations. 
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Figure 7: The third natural mode 

shape of vertical or horizontal 

flexural vibrations. 
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Figure 8: The fourth natural mode   

shape of vertical or horizontal 

flexural vibrations. 
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Figure 9: The fifth natural mode 

shape of vertical or horizontal 

flexural vibrations. 
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Figure 10: The first natural mode 

shape of transverse vibrations. 
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Figure11: The second natural mode 

shape of transverse vibrations. 
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Figure12: The third natural mode 

shape of transverse vibrations. 
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Table 2: The lowest five whirling speeds 
1 5   (with    ) for the 

analysed system (see Figure 4) obtained from the presented method and those 

obtained using FEM in [7]. 

 

                                      Whirling speeds ( / )r rad s with     

Direction of whirling    Presented study       FEM in ref. [7]
 

 

                                             77.10999               77.1099  

                                             316.25910             316.2592 

Forward                               686.80099              686.8000     

                                            4406.50311            4406.5176 

                                            4412.74362            4412.7581 

                                            73.5999                   73.7625 

                                            266.58580               266.5857 

Backward                            513.78038               513.7804     

                                            587.40753               587.407                                   

                                            927.963559              927.6585 
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Figure 13: The fourth natural mode 

shape of transverse vibrations. 
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Figure 14: The fifth natural mode 

shape of transverse vibrations. 
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Figure 15: The first whirling mode 

shape. 
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Figure 16: The second whirling mode 

shape. 
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Figure 17: The third whirling mode 

shape. 
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Figure 18: The fourth whirling mode 

shape. 
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Figure 19: The fifth mode shape of 

forward whirl. 
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Figure 20: The fifth mode shape of 

backward whirl. 
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Conclusions 
 

It is seen that the calculated natural frequencies as well as the critical 

whirling speeds agree perfectly with those obtained from existing literature 

([7]). The given relationships in this work allow an analysis of the gyroscopic 

effect of disks on transverse vibrations. Especially, the extended transfer 

matrices related to the vectors of solution coefficients used in this work, are 

well-suited for manipulation and make the procedures straight forward for 

taking into account a linear model of internal damping in shafts or the 

consideration of shear effect, rotary inertia and transverse crack. The 

presented analytical method combined with algebraic complements, allows 

obtaining the natural mode shapes of multi-disk shaft system with 

appreciable accuracy. The presented technique is easy to compute and 

because of its reliability and precision, it can be used for vibration analysis of 

industrial rotating machinery, when the angular speed is subjected to wide 

ranges of change 
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APPENDIX           
 

The matrices ( )iC x  and ( )iD x in Equation (6) and (10) are as follows: 

cos sin cosh sinh 0 0 0 0

0 0 0 0 cos sin cosh sinh
( )

0 0 0 0 sin cos sinh cosh

sin cos sinh cosh 0 0 0 0

i

x x x x

x x x x
C x

x x x x

x x x x

   
   

       
       

 
 

    
 
 

 

3 3 3 3

3 3 3 3

2 2 2 2

2 2 2 2

( )

0 0 0 0sin cos sinh cosh

0 0 0 0 sin cos sinh cosh
     

0 0 0 0 cos sin cosh sinh

cos sin cosh sinh 0 0 0 0

i

i i

D x

x x x x

x x x x
E I

x x x x

x x x x

       
       

       
       



   
   
 

  
   

 

with  
1/41/2  /  ,   ;  0 .i i i i i i i iS E I x x x L         

 

The matrix iB in Eq. (16) has the following form: 

   

1 1 2 2
(1)

1 2 3 3 4 4
(2)

2 2 1 1

4 4 3 3 ( )

cos sin cosh sinh

0 sin cos sinh cosh
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cos sin cosh sinh0
sin cos sinh cosh

i
i i i

i

i
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     
   

  

 

where, 

 
 
 

 
 
 

2 2

1 22 2

1 1

1 1
,   ,   

2 22 2

i i

i i

i i

EI EI
e e

EI EI

 

 
 

   
 

 
 
 

 
 
 

3 3

3 43 3
1 1

1 1

 ,   
2 22 2

i i i i

i i

i i
i i

EI EI
e e

EI EI

  

   
 

     

 

The matrices ( )iS L
 
and 

iM in Equation (26) are: 

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
( )

sin cos sinh cosh 0 0 0 0

0 0 0 0 sin cos sinh cosh

iS L
L L L L

L L L L

       
       

 
 

  
 

 

 

,

,

i

i
i

d i

d i

m

m
M

J

J

 
 
 
 
    
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The matrices 1(0)Q  and ( )n nQ L in Equation (31b) and (31b) are as follows:

1/2 1/4
1 2 2 1 1 1 1 1

1 1 1 1
2 2

1 1 1 1

1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0
(0) ,   ( ( / ) ),

0 0 0 0 0 0

0 0 0 0 0 0

Q A E I
E I E I

E I E I

  
 

 

 
 

   
 

  

  

 

( )n nQ L 

2 2 2 2

2 2 2 2

cos sin cosh sinh 0 0 0 0

cos sin cosh sinh0 0 0 0

0 0 0 0 cos sin cosh sinh

cos sin cos sin 0 0 0 0

n n n n

n n n n

n n n n

n n n n

L L L L

L L L L

L L L L

L L h L h L

   
   

       
       

 
 

  
  

   

 

 
1/2 1/4 ( / ) ,   n n n n nA E I    

nL is the length of the nth shaft segment. 

 

Figure A1 shows a rotating disk i, with a spin speed   about its longitudinal 

axis (a) and a whirling speed  about the centreline of the bearings ( ix -axis) 

or ( 1ix + -axis). Its axial coordinate is i ix x L  in the fixed coordinate 

system   i i ix y z  corresponding to the axial coordinate 1 0ix x   in the 

fixed coordinate system 1 1 1  .i i ix y z   abc  denotes the cross-sectional 

coordinate system, defined by the rotational angles ,,  ( )y i it L  and

, ( )z i iL about the ,i ix y  and iz  axis, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: The simultaneous movements of whirling and spinning of a disk. 
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Figures A2 and A3 show the lowest five natural mode shapes for the pined-

pined shaft carrying three identical rigid disks. The first, second, third, fourth 

and fifth natural mode shapes  are represented by the curves with solid circles  

(     ),  crosses  (   ),  triangles  (    ),  squares  (    ),  and  stars  (     ),    

respectively, as shown in the legend. 

 

 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

-1,0

-0,5

0,0

0,5

1,0

V
e
r
ti

c
a

l 
d

ir
e
c
ti

o
n

H
or

iz
on

ta
l d

ir
ec

ti
on

Axial distance [m]

Figure A2: The lowest five natural 

mode shapes obtained from presented 

method. 

 
 

Figure A3: The lowest five natural 

mode shapes imported from [7]. 
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