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ABSTRACT 
 

Globally, the manufacturing industry is moving towards sustainable 
manufacturing in order to preserve natural resources and human well-being. 
Compressed air is not only recognised as an ideal option to replace cutting 
fluid in order to flush away chips for surface quality reasons but also to 
reduce the environmental burden due to disposal of used cutting fluid, as well 
as to minimise the consumption of natural resources in cutting fluid 
production. However, chip clearing in order to prevent a tool from recutting 
the chips is a great challenge in dry milling. Considering this issue, 
compressed air is necessary to prevent a tool from recutting the chips. In this 
experimental work, slot milling experiment based on 3² factorial 
experimental design was conducted in order to identify the effect of 
compressed air and cutting speed on the surface roughness of 6061 
aluminium alloy. Three levels of compressed air and cutting speed were used, 
whereas the depth of cut and feed rate were held constant. The results 
demonstrated that the higher amount of compressed air and cutting speed 
will lead to high surface quality and vice versa. Nevertheless, the surface 
roughness generated at different cutting speed does not depend on the 
amount of compressed air. 
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Introduction 
 
6061 aluminium alloy has been widely used in various sectors, especially in 
the automotive sector where light weight, high thermal conductivity, and 
better corrosion resistance with good strength are required [1]-[3]. This gives 
an explanation why 6061 aluminium alloy can be found in automotive parts, 
such as panels, wheels, and the structure of the vehicle [1, 2]. Furthermore, it 
has most of the good qualities of aluminium alloys and it can be machined by 
most of the commonly used machining processes, as well as milling 
processes. 

Nowadays, the production of automotive parts remains high as vehicle 
demand increases around the world. Consequently, this matter leads to the 
rise of applying higher number of milling processes and indirectly increases 
the use of cutting fluids. In fact, cutting fluids have a significant influence on 
the environmental burden due to the disposal of used cutting fluids and the 
consumption of natural resources in cutting fluid production [4]-[6]. 
Referring to this issue, the ecological aspect should be considered in order to 
preserve natural resources and human well-being while performing 
manufacturing activities. Subsequently, a plethora of options have been 
implemented to reduce the environmental impact of cutting fluid usage, such 
as cryogenic, nanofluids, near dry or minimal quantity lubricant (MQL), solid 
lubrication, gaseous cooling, sustainable cutting fluids, and dry that have 
been stressed in many published papers [5, 7]-[15]. 

As claimed by Benedicto, Carou, and Rubio [15], dry machining removes 
cutting fluids and it is an ideal option by considering that the method is not 
only free from atmosphere and water contamination but also reduced cost. 
Nevertheless, dry machining is still unable to obliterate any doubt over their 
suitability to be an ideal option in replacing cutting fluids due to the chip 
evacuation issue. Undoubtedly, cutting fluids are the catalyst in the high 
surface quality of the machined material. This can be seen through their role 
to evacuate the chips from the cutting zone to prevent a tool from recutting 
the chips. For these reasons, most of the machine tools are equipped with 
built-in air nozzles to blow compressed air on the machined surface when dry 
machining is applied. However, it seems that compressed air in machining 
has received less attention since very few scientific papers have stated the 
influence of compressed air on surface roughness in dry machining. 
Meanwhile, surface roughness research has revealed that the increase in the 
feed rate results in the decrease of surface quality [16]-[19]. In contrast, an 
incremental increase in cutting speed leads to an incremental increase in 
surface quality [16, 17, 19], whereas the depth of cut has the least significant 
effect on surface quality [18, 20]. It can be defined that the highest cutting 
speed and the lowest feed rate produced better surface roughness. Hence, the 
objective of the study is to present an understanding towards the effect of 
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varying compressed air and cutting speed simultaneously on the surface 
roughness of 6061 aluminium alloy in dry slot milling. Besides, recutting the 
chips that cause low surface quality is a common obstacle in slot milling. 
 
Experimental Set Up 
 
As presented in Table 1, 3² factorial experimental design was used to identify 
the effect of varying compressed air and cutting speed on the surface 
roughness of 6061 aluminium alloy. In addition, compressed air was supplied 
through the built-in air nozzles from the machine tool itself, and the amount 
of depth of cut and feed rate were held constant at the lowest value in order 
to avoid the interruption on the main factors. 
 

Table 1: Variable parameters used in the experiment 
 

Compressed air (PSI) 
Cutting speed (m/min)                 

: 80, 100, 120 
: 90, 106, 122 

Depth of cut (mm) 
Feed rate (mm/min) 

: 2 
: 300 

 
The experimental set-up in this study was conducted on 90 mm × 90 mm 

× 35 mm 6061 aluminium alloy with the original hardness of 104 HV using 
an Okuma MX-45VA vertical CNC machining centre as shown in Figure 1, 
whereas Table 2 shows the chemical compositions of 6061 aluminium alloy. 
 

 
 

Figure 1: Okuma MX-45VA vertical CNC machining centre 
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Table 2: Chemical composition of 6061 aluminium alloy (wt%) 
 

Al Si Mg Mn Fe Cu Ti Ni Cr Zn 
97.40 1.00 0.57 0.53 0.29 0.03 0.02 0.02 0.01 0.01 

 
The slot milling was performed using AMF 2100T tungsten carbide 

(AlTiN coated) with the end mill diameter of 10 mm with two flutes from 
TaeguTec in dry condition. The surface roughness of 6061 aluminium alloy 
was measured using Mahr Perthometer S2 with 5.60 mm (DIN/ISO) 
traversing length and plotted as the roughness average (Ra) in μm. 
 
Results and Discussion 
 
Figure 2 shows the milled 6061 aluminium alloy block and Figure 3 depicts 
the surface plot, which is a three-dimensional graph representing the effect of 
varying compressed air and cutting speed simultaneously on the Ra of 6061 
aluminium alloy. The surface plot shows that the highest values of Ra for dry 
slot milling of 6061 aluminium alloy are located at the upper back corner of 
the plot, which corresponds to the low values of both compressed air and 
cutting speed. Meanwhile, the lowest values of Ra are observed at the lower 
middle corner of the plot, which corresponds to the high values of both 
factors. 
 

 
 

Figure 2: Milled 6061 aluminium alloy block 
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Figure 3: Surface plot of the relationship between cutting speed, compressed 
air, and roughness average 

 
By referring to the main effect plot for Ra in Figure 4, the slope of the 

lines reveals that the steeper the slope, the smaller the mean of Ra. In short, 
both compressed air and cutting speed seemed to have a significant effect on 
Ra as each line falls steeply between 80 and 120 psi of compressed air and 90 
and 122 m/min of cutting speed. It means that the value of Ra decreases with 
increasing compressed air and cutting speed, and vice versa. On the other 
hand, the main effect plot indicates that applying the compressed air of 120 
psi has a minor effect, whereas using the cutting speed of 122 m/min has a 
greater effect. Therefore, it would be necessary to determine whether the 
interaction effect is statistically significant or not towards Ra. 
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Figure 4: Main effects plot for roughness average 
 

As presented in Figure 5, the lines are parallel, thus there is no 
interaction. In general, the diamond shape appeared as the lower data mean, 
followed by the square shape and the circle shape, hence there is likely a 
main effect of compressed air such that 120 psi leads to lower Ra values than 
100 and 80 psi. This phenomenon is supported based on the findings in [21-
24], which studied high pressure in both water and coolant during the 
machining process. It is believed that the increase of compressed air leads to 
an incremental reduction in the tool-chip contact area due to the 
fragmentation of the chip and subsequently improves the chip breakability 
and efficiency of the tool rotation, as well as decreases the tool-chip friction 
interface. Moreover, the Ra values at cutting speed of 122 m/min are lower 
than the roughness values at cutting speed of 106 and 90 m/min, suggesting 
that there is a main effect for cutting speed as the cutting speed behaviour is 
similar as previously reported in [16,17,19]. Finally, as there is no interaction 
effect present, it means that the interpretation of the main effects is complete 
and it can be said that the relationship between Ra and cutting speed does not 
rely on the amount of compressed air. 
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Figure 5: Interaction plot for roughness average 
 

In summary, higher amount of compressed air and cutting speed will lead 
to excellent surface quality. The minimal surface roughness corresponds to 
excellent surface quality, which occurred at compressed air of 120 PSI and 
cutting speed of 122 m/min. However, the surface roughness generated at 
different cutting speed does not depend on the amount of compressed air. 
 
Conclusion 
 
Due to the increasing concern towards the consumption of natural resources 
and human well-being while performing manufacturing activities, the idea to 
replace cutting fluid in order to flush away chips for surface quality reasons 
and to reduce the disposal of used cutting fluid as well as to minimise the 
consumption of natural resources in cutting fluid production has increased 
phenomenally in the past three decades. Chip evacuation for preventing a 
tool from recutting the chips is a great challenge in dry slot milling. 
Therefore, compressed air is necessary to prevent a tool from recutting the 
chips, and dry slot milling experiment based on 3² factorial experimental 
design was carried out to screen factors affecting the surface roughness of 
6061 aluminium alloy. The results revealed that higher amount of 
compressed air and cutting speed will lead to high surface quality, and vice 
versa. The minimal surface roughness corresponds to high surface quality, 
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which occurred at compressed air of 120 psi and cutting speed of 122 m/min. 
However, cutting speed appeared as the dominant factor affecting surface 
roughness compared to compressed air. Furthermore, there is no interaction 
effect of both factors as the main effects are independent of one another. It 
can be said that the surface roughness generated at different cutting speed 
does not depend on the amount of compressed air. Despite no interaction 
effects between both factors, a further study should be carried out to evaluate 
the effect on tool life in dry milling of 6061 aluminium alloy, since chip 
evacuation issue is not only affecting surface quality but also the tool life. 
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