SYNERGISTIC STUDY OF Lawsonia inermis (HENNA) LEAVES EXTRACT AND Citrus limonum (LEMON) JUICE AGAINST BACTERIA CAUSING SKIN INFECTIONS

KHAIRUNNISA SAMSUDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2018

This Final Year Project Report entitled "Synergistic Study of *Lawsonia inermis* (Henna) Leaves Extract and *Citrus limonum* (Lemon) Juice Against Bacteria Causing Skin Infections" was submitted by Khairunnisa binti Samsudin, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Rashidah Binti Iberahim Supervisor Faculty of Applied Sciences Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan

Lily Syahani Binti Rusli Coordinator FSG661 AS201 Faculty of Applied Sciences Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan Dr. Aslizah Binti Mohd Aris Head of Biology School Faculty of Applied Sciences Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan

Date: _____

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1: INTRODUCTION

3
3
4

CHAPTER 2: LITERATURE REVIEW

2.1	Skin Bacterial Infections		
2.2	Lawso	nia inermis (Henna)	
	2.2.1	Morphology and chemical constituents of Lawsonia	
		inermis	6
	2.2.2	Traditional and common usage of Lawsonia	
		inermis	7
	2.2.3	Biological activity	8
2.3	Citrus	limonum (Lemon)	
	2.3.1	Morphology and chemical constituents in Citrus limonum	9
	2.3.2	Traditional and common usage of Citrus limonum	10
	2.3.3	Biological activity	11

CHAPTER 3: METHODOLOGY

3.1	Materials		
	3.1.1	Raw materials	12
	3.1.2	Chemicals	12
	3.1.3	Apparatus	13
3.2	Methods		
	3.2.1	Henna and Lemon Collection	14
	3.2.2	Extraction preparation for henna leaves and lemon juice	15
	3.2.3	Phytochemical screening	16
	3.2.4	Preparation of bacterial culture	18
	3.2.5	Antibacterial screening of extract	18
	3.2.6	Minimum Inhibitory Concentration (MIC) of extract	19

CHAPTER 4: RESULTS AND DISCUSSION		
4.1 Evaluation on Phytochemical Analysis of the Plant Extract	22	
4.2 Evaluation on Antibacterial Activities of the Plant Extract	25	
4.3 Evaluation on Minimum Inhibitory Concentration of the	30	
Plant Extract		
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	35	
CITED REFERENCES		
APPENDICES	43	
CURRICULUM VITAE	45	

21

ABSTRACT

SYNERGISTIC STUDY OF Lawsonia inermis (HENNA) LEAVES EXTRACT AND Citrus limonum (LEMON) JUICE AGAINST BACTERIA CAUSING SKIN INFECTIONS

Bacterial invasion through the skin layers can cause various types of Skin and Soft Tissue Infections (SSTI) that mainly caused by S. aureus and P. aeruginosa. Recent study also found that E. coli causes a rare type of SSTI. Pharmaceutical industries have manufacture many types of synthetic antibiotics to treat SSTI but prolonged usage of these antibiotic treatment will lower its effectiveness due to the increasing in bacterial resistance cases towards the common antibiotics. The aim of this study is to determine the antibacterial activity of Citrus limonum (Lemon) juice and Lawsonia inermis (Henna) leaves combination extract by using agar well-diffusion method and 96-well microtiter plate for MIC test. The samples used were pure lemon juice and henna leaves that were extracted by using 100% methanol. Phytochemical component in the extract that possess antibacterial properties such as saponin, tannin, alkaloid, flavonoid, steroid and phenolic were also determined. The result of antibacterial screening test shows that combination extract has higher antibacterial activity towards S. aureus and lower effect towards P. aeruginosa and *E. coli* with diameter of inhibition zone of 18.67 ± 1.53 mm and 13 ± 1.73 mm, 13 \pm 1.0 mm respectively. The MIC result shows higher antibacterial activity against S. aureus at 1.5625 mg/ml and lower effect towards P. aeruginosa and E. coli at 3.125 mg/ml. Overall, combination extract shows higher antibacterial effect towards the chosen bacteria compared to single usage of extract.