

COOLING WATER SYSTEM OF HYDRO POWER PLANT: A CASE STUDY

KHAIRUL FAIZAL BIN KUSHIAR (2006869110)

A thesis submitted in partial fulfilment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > APRIL 2009

ACKNOWLEDGEMENTS

I would like very mush to express my heartfelt gratitude to my supervisor, Dr. Salmiah Kasolang @ Kasalung for her consistent help and guidance, as well as provision of her valuable time, encouragement and patience during the period of this work.

Special thanks are particularly to the following TNB staffs, for without their kind generosity and support in providing me with data, various technical paper and thesis, it would not have been possible for me to complete this thesis

Mr. Azmi Awi	Mechanical Engineer
	Stesen Janaelektrik Sultan Mahmud (SJSM)
	Kenyir, Terengganu.
Mr. Mohamad Fathel B Mohamed	Mechanical Executive
	Stesen Janaelektrik Sultan Mahmud (SJSM)
	Kenyir, Terengganu.
Mr. Nor Naim B Mispan	Mechanical Technician
	Stesen Janaelektrik Sultan Mahmud (SJSM)
	Kenyir, Terengganu.
Mr. Faizal B Abdul Ghani	Engineer Mechanical and Electrical Project
	Generation Asset Development (GAD)

All contributions have been most meaningful to me and you support gave me the strength to persevere. Thank you very much.

Khairul Faizal Kushiar

ABSTRACT

This project looks into the water cooling system of a Hydro Power Plant in Stesen Janaelektrik Sultan Mahmud, Kenyir. The plant is currently using an open circuit water cooling system. The water for the cooling system is taken from the nearest river. With the existing system, the water produces a lot of sludge that has blocked the delivery tube line in the cooler. This problem has slightly reduced the heat transfer from the generator to the cooling system and the efficiency of the cooler. The main objective of this project is to address this issue. The project has been carried out in two parts. The first part of the project is to study, assess, and properly document the current water cooling system and the major problems reported. In the second part of the project, different water cooling systems are discussed from which the most practical system has been selected and presented as solution for the current problem faced in the hydro power plant. Some of the design criteria of the proposed cooling system are to reduce maintenance cost and work for the cooler. The outcome of this project is a detailed proposal of a new cooling system that will eliminate the present problem face by the Hydro Power Plant in Stesen Janaelektrik Sultan Mahmud, Kenyir.

TABLE OF CONTENTS

CONTENTS	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi

CHAPTER I INTRODUCTION

1.0	Project Overview		1
1.2	Problem Background		
	1.2.1	Generator Air Cooler	2
	1.2.2	Brief Description about Existing Cooling Water	
		System	2
	1.2.3	Existing Problem with Oil Coolers Tube and GAC	
		Cooling System at Kenyir Hydropower	3
1.3	Projec	t Objective	5
1.4	Scope of the Project		5
1.5	Significance of Project 6		6
1.6	Metho	dology	6

CHAPTER II LITERATURE REVIEW

2.0	Hydroelectric Power		7
2.1	How Hydropower Works		8
	2.1.1	Generating Power	8
2.2	Cooling Water System		9
2.3	Types of Cooling System		10
	2.3.1	Once-Through Cooling	10
	2.3.2	Closed Cooling System	11
	2.3.3	Open Recirculation Cooling Tower	12
		2.3.3.1 Types of Tower	12
2.4 Basic Heat Transfer Process		15	
	2.4.1	Heat Transfer Process Formulation	16
2.5	2.5 Problems in Cooling Water Systems		16
	2.5.1	Scale	17
	2.5.2	Fouling	18
		2.5.2.1 Fundamental Processes of Fouling	19
	2.5.3	Microbiological Growth	20
	2.5.4	Corrosion	21

CHAPTER III METHODOLOGY

3.0	Introduction	22
3.1	Literature Review	
3.2	3.2 Define Current System and Parameters	
	3.2.1 The Problem Faces by the Existing Cooling	
	System	24
3.3	Designing a New Cooling System	24
3.4	Analysis of Result	