UNIVERSITI TEKNOLOGI MARA

INTEGRATION OF LAND AND MARINE VERTICAL DATUM

MOHAMMAD KHAIRUL BIN HASBOL

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

July 2019
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Mohammad Khairul Bin Hasbol
Student I.D. No. : 2016490842
Programme : Bachelor of Surveying Science and Geomatics (Hons)
 AP220
Faculty : Architecture, Planning and Surveying
Thesis : Integration of Land and Marine Vertical Datum

Signature of Student : ..
Date : July 2019
Integration of land and marine vertical datum is become important issues nowadays. Many agencies from oversea has conduct project and research to joining land and marine data. Seamless vertical datum is needed to produce high accuracy vertical data to join land and marine data. In order to represent seamless vertical surface, geoid modelling is the alternative way to define the seamless vertical surface. In this study, determination of gravimetric geoid model for Peninsular Malaysia computed using Least Square Modification of Stokes’ with Additive Correction (AC). Gravimetric geoid model over Peninsular Malaysia computed from various dataset which include 8241 points of terrestrial gravity data, 370736 points of marine gravity data, 24856 points of gravity data, Global Digital Elevation and three (GOCO01S, GOSG01S, GOCO2s) GGM models. Gravimetric geoid model computed from three GGMs models undergo evaluation and validation with local mean GNSS/Levelling. GOCO01S GGM model represent the best fit for geoid modelling Peninsular Malaysia with standard error 0.063m. The new gravimetric geoid model for Peninsular Malaysia has been developed 1’ x 1’ arc minute grid interval. In order to integrate land and marine vertical datum, relationship between different vertical is investigate. In order to investigate the relationship, all the vertical datum is positioned and referred to ellipsoid surface. Therefore, GNSS observation has been conducted on Tidal Gauge Benchmark around Peninsular Malaysia tidal station to determine the ellipsoid surface. Separation value from geoid surface to different vertical has been computed which produce various vertical dataset. The separation value applied on geoid surface to joining land and marine data.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIRMATION BY PANEL OF EXAMINERS</td>
<td>ii</td>
</tr>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>SUPERVISOR’S DECLARATIONS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER ONE INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statements 3
1.3 Aim and Objectives 5
1.4 Scope and Limitation of Research 6
 1.4.1 Scope of Work 6
 1.4.2 Limitation and Challenges 7
 1.4.3 Study Area 8
1.5 Significant of Study 9
1.6 General Methodology 10
1.7 Thesis Outline 11

CHAPTER TWO LITERATURE REVIEW

2.1 Introduction 12
2.2 Vertical Reference Surfaces 12
 2.2.1 Tidal Surfaces 12
 2.2.2 Mean Sea Level (MSL) 13
 2.2.3 Geoid 13
 2.2.4 Ellipsoid Surface 13
CHAPTER FOUR RESULT AND ANALYSIS

4.1 Introduction 85
4.2 Impact Sea Level Rise to Local Vertical Datum 86
4.3 Gravimetric Geoid Model Over Peninsular Malaysia Using Least Square Modifications of Stoke 92
4.3.1 Evaluation of GGM 92
4.3.2 Evaluation of Global Digital Elevation Model (GDEM) 94
4.3.3 Gravimetric Geoid Model of Peninsular Malaysia 95
4.3.4 Accuracy Evaluation of Gravimetric Geoid Model 96
4.3.5 Gravimetric Peninsular Malaysia Geoid Model (PMGM2019Grav.) 97
4.4 Investigation of Relationship between Different Vertical Datum 98
4.4.1 GPS Data Processing using AUSPOS 98
4.4.2 Precise Levelling from TBM to TGBM 99
4.4.2 Separation Value of Local MSL and Gravimetric Geoid Model 100
4.4.3 Development of Hybrid Geoid Model based on Local MSL 105
4.4.4 Analysis of Fitted Gravimetric Geoid Model to Local MSL 107
4.4.5 Investigation of Relationship between Different Vertical Datum 109

CHAPTER FIVE CONCLUSION AND RECOMMENDATION 111

5.1 Introduction 111
5.2 Conclusion 111
5.3 Recommendation 113

REFERENCES 114