UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF ON-SITE DETECTION DEVICE FOR PATHOGENIC *LEPTOSPIRA* SPP. IN STREAM WATER

DZULAIKHA BINTI KHAIRUDDIN

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Bio-Environmental Engineering)

Faculty of Civil Engineering

October 2019

ABSTRACT

Leptospirosis is a disease caused by bacteria Leptospira interrogans. The number of leptospirosis occurrence is increasing, especially in a tropical climate country like Malaysia. Lack of awareness towards this disease can be associated with insufficient information of *Leptospira* distribution in the environment, especially at the recreational stream water. This study describes the optimization of Loop-mediated isothermal amplification targeting LipL32 gene specific to pathogenic Leptospira (LipL32-LAMP). The successfully optimized LipL32-LAMP assay further was integrated into the design, fabrication and experimental verification of a portable on-site detection device for pathogenic Leptospira at recreational stream water. The device consists of three different parts and processes, the filtration and entrapment systems, the thermal lysis and DNA collection system and at the end of the process the LipL32-LAMP assay was used for specific detection of pathogenic Leptospira. In this study, the LipL32 gene of pathogenic Leptospira was successfully detected by the optimized LipL32-LAMP assay in 10-20 minutes of incubation at 65°C, shown by the changes in color of the reaction from orange to pink. The portable on-site detection device for pathogenic Leptospira was successfully developed and demonstrated on-site with verification in laboratory by LipL32-PCR. The total detection time from sample filtration to LipL32 detection was 30-45 minutes. A year monitoring study on the occurrence of pathogenic Leptospira concludes that the occurrence Leptospira in stream water have a strong relationship with rainfall. Statistical analysis revealed that the occurrence of Leptospira in stream water was higher during dry season and lower or non-detected during rainy season. In conclusion, this study has successfully developed a portable detection device for pathogenic *Leptospira* spp. in waterfalls that have novelty in the portability of the design, sample processing and analysis of *Leptospira* in stream water. The application of this device has huge potential for prevention of Leptospirosis infection in recreational area especially in the tropical climate country where infectious *Leptospira* is a great concern.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii

СН	APTE	R ONE: INTRODUCTION	1
1.1	Resear	ch Background	1
1.2 Problem Statements		3	
	1.2.1	Detection of Leptospira at the Recreational Area	3
	1.2.2	Prevention of Leptospirosis Infection in Recreational Area	3
	1.2.3	Monitoring of Leptospira spp. at Recreational Sites	3
1.3	Object	ives of the Study	4
1.4	Signif	icance of the Study	4
1.5	Scope	and Limitation of the Study	5
CH	APTE	R TWO: LITERATURE REVIEW	7
2.1	Leptos	pira	7
	2.1.1	Non-pathogenic (Saprophytic), Intermediate Pathogenic and	
		Pathogenic Leptospira	7
2.2	Leptos	spirosis	8
	2.2.1	Clinical Presentation	10
	2.2.2	Laboratory Diagnosis Methods used in Malaysia	10
		2.2.2.1 Microscopic Agglutination Test (MAT)	11
		2.2.2.2 Immunoglobulin M Enzyme-linked Immunosorbent Assay	(IgM-

		ELISA)	13
		2.2.2.3 Polymerase Chain Reaction (PCR) of Leptospira	15
	2.2.3	Inoculum Required for Infection of Leptospira	17
	2.2.4	Treatment of Leptospirosis	18
	2.2.5	Leptospirosis Incidence in Malaysia	19
2.3	Molec	ular Detection of Leptospira	21
	2.3.1	DNA Sequencing	21
	2.3.2	LipL32 Pathogenic Leptospira Marker Gene	22
	2.3.3	Conventional PCR and RT-PCR	23
	2.3.4	Loop-mediated Isothermal Amplification	24
		2.3.4.1 The Reaction Mechanisms of LAMP	25
	2.3.5	Ideal Sample Preparation for Molecular Based Detection	27
		2.3.5.2 Pathogen Lysis	27
		2.3.5.3 Removal of Matrix Inhibitor	28
		2.3.5.4 Target Titre	28
2.4	Recrea	ational Water	29
	2.4.1	Association of Leptospirosis and Recreational Water	29
	2.4.2	Detection of Pathogenic Leptospira in Recreational Water	31
	2.4.3	Prevention and Control of Leptospirosis	32
2.5	Point	of Care (POC) and Portable Detection Device for Pathogen	34
	2.5.1	Types of POC and On-site Detection	34
		2.5.1.1 Permanent Integrated Instrument	34
		2.5.1.2 Direct Detection with Disposable Strips	35
		2.5.1.3 Disposable Consumable with Portable Support Device	35
	2.5.2	Need for Portable Detection Device	37
	2.5.3	Portable Detection Device Cost and Maintenance	38
	2.5.4	Recent Availability of Portable Detection Device for Detection of	
		Pathogen in Environment	38
СН	APTE	R THREE: RESEARCH METHODOLOGY	40
3.1	Materi	als and Methods	40
	3.1.1	Bacterial Strains and Vectors	40
	3.1.2	Microbiological Methods and Media Preparation	41
		3.1.2.1 Sterilization	41

CHAPTER ONE INTRODUCTION

1.1 Research Background

Worldwide, the popularity of recreational activities which involve contact with water has grown. Moreover, ease of travel has altered the public use of water for recreational purposes. The adverse impacts of recreational use of freshwater environments upon the health of users must be weighed against the enormous benefits to health and well-being. Recreational area always associated with the use of this environment for rest, relaxation and exercise. In Malaysia, in addition to being the focus for leisure, recreational area is also a focus for family activities like picnics and grills and other activities such as camping group of students.

Contaminated water with pathogenic *Leptospira* will pose a hazardous threat to deadly disease infections if not detected early. The case of death from Leptospirosis is a great concern for a tropical country like Malaysia. The warm and humid climate throughout the year in Malaysia is a favour of *Leptospira* leading to longer survival. Any water bodies such as streams, stagnant water, bogs, ponds and puddles are natural habitats for *Leptospira*. The survival of this bacteria mostly depends on high humidity with neutral pH (6-7.5). In addition to natural habitats, the presence of *Leptospira* in the water is also due to the excreted of urine of *Leptospira* infected animals. Humans are infected either directly through contact with infected urine or indirectly through contaminated water or soil. The bacteria enter the body through wounds and abrasions of the skin and through the mucosal surface of the mouth, nose and conjunctiva.

In recent years, the case of Leptospirosis that occurred after exposure to recreational activities in the waterfall area seemed like no solution. Most cases are often critical or delayed, leading to a lot of loss of life. So many of these unwanted events should be a signal that detailed investigations to prevent the occurrence of an infection should be implemented. Action should be taken to reduce the *Leptospira* infection during recreational water activities.