UNIVERSITI TEKNOLOGI MARA

MONITORING OF BUILDING STRUCTURAL DEFORMATION USING GLOBAL POSITIONING SYSTEM, TERRESTRIAL SURVEYING TECHNIQUE AND CRACK GAUGE MEASUREMENT

MAT RAHIM BIN IBRAHIM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Architecture, Planning & Surveying

February 2008
Candidate’s Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agreed be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate: Mat Rahim Bin Ibrahim
Candidate’s ID No: 20022101041
Program: Master of Science in Built Environment (By Research)
Faculty: Faculty of Architecture, Planning and Surveying
Thesis Title: Monitoring of Building Structural Deformation using Global Positioning System, Terrestrial Surveying Technique and Crack Gauge Measurement

Signature of Candidate: [Signature]
Date: 15-2-2008
ABSTRACT

Deformation of engineering structures is often monitored in order to ensure that the structure is exhibiting a safe deformation behavior. The deformation of high-rise building can be monitored using geodetic surveys and geotechnical/structural measurements. Geodetic surveys include conventional (terrestrial) and satellite (Global Positioning System); whereas geotechnical/structural measurements are detected either by using leasers, tiltmeters, joint-meters or micrometers. This research discusses the capability of monitoring high and low-rise building structure using geodetic surveys (conventional and satellite) and geotechnical measurement (crack width measurement). Two buildings namely the Twin Tower and Innovation Centre Building of University Technology MARA (UiTM), Selangor, Malaysia were chosen for this research. Five control stations have been established around the UiTM Twin Tower Building for the purpose of monitoring and another nine points for the Innovation Centre Building. The monitoring exercises were carried out at four (4) different epochs. The Terrestrial and Global Positioning System (GPS) dataset in the monitoring exercise were processed and analysed using the Trimble Geodetic Office (TGO) survey software. Generally the monitored points for the Twin Tower Building experienced movements within 1 mm to 10 mm. For the Innovation Centre Building monitored points seemed to shift between 1 mm to 9 mm. Detection of movement for both building structures seemed to be within the allowable tolerance. It is shown that monitoring of building structures using the techniques adopted in this study has significant advantages and disadvantages.
ACKNOWLEDGEMENTS

In particular, I wish to express my sincere appreciation to my supervisor, Assoc Prof Dr. Sr. Jasmee Jaafar for his encouragement, guidance and friendship. Without his continued support and interest, this thesis would not have been the same as presented here.

Special thanks are also due to the staff of the Department of Surveying Science and Geomatic, Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, Malaysia for giving the opportunity in using the GPS (Global Positioning System) instruments and support given throughout my research.

I also wish to express my gratitude to the following people whose have assisted me in the conduct of this research, namely Assoc Prof Dr. Kamaludin Talib, Mr. Mohd Hasif Ahmad Nasruddin, Mr. Azizan Kassim and Mr. Khairul Azhar Zainuddin.

Last, but not the least, I am also grateful to all my family members in Kampung Pendek, Kota Bharu, Kelantan who give me the much needed continuous support.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.0 Introduction 1
1.1 Problem Statements 2
1.2 Research Objectives 4
1.3 Scope and Area of Research 5
1.4 Contribution 6
1.5 Research Methodology 6
1.6 Thesis Outline 8
1.7 Summary 9

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction 10
2.1 Monitoring Structural Deformation 10
2.1.1 Geodetic surveys 10
2.1.2 Geotechnical measurements 11
2.1.3 Accuracy requirements for performing deformation surveys 11
2.2 Global Positioning System (GPS) 12
2.2.1 GPS observation techniques 15
2.3 Terrestrial Surveys 21
2.3.1 Observation techniques 22