UNIVERSITI TEKNOLOGI MARA

EFFECTS OF TI AND Sr SITE SUBSTITUTIONS ON SUPERCONDUCTIVITY, STRUCTURE AND EXCESS CONDUCTIVITY OF TISr₂CaCu₂O₇₋₅ CERAMICS

NURULHUDA BINTI AHMAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

Disember 2010

Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other degree or qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntary waive the right of conferment of my degree and agree be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate	Nurulhuda binti Ahmad		
Candidate's ID NO.	2007 2449 16		
Programme	Master of Science in Physics		
Faculty	Applied Sciences		
Thesis Title	Effects of Tl and Sr site substitutions on superconductivity,		
	structure and excess conductivity of TlSr2CaCu2O7-8		
	ceramics		

Signature of Candidate	
Date	Disember 2010

ABSTRACT

The study involves four different compounds of TISr1212 superconductors. There are TI₁. xCuxSr1.8Yb0.2CaCu2O7-& (x=0.0-0.6), Tl1-xCuxSr1.6Yb0.4CaCu2O7-& (x=0-0.5), Tl0.5Pb0.5Sr2. $_{x}Mg_{x}Ca_{0.8}Yb_{0.2}Cu_{2}O_{7-\delta}$ (x=0-1.0) and Tl_{0.5}Pb_{0.5}Sr_{2-x}Yb_xCaCu₂O_{7-\delta} (x = 0.1-0.4) series. All the samples were synthesized using the solid state synthesis method. Temperature dependent electrical resistance measurements on $Tl_{1,x}Cu_xSr_{1,8}Yb_{0,2}CaCu_2O_{7-\delta}$ (x = 0.0-0.6) series showed the best superconducting behavior at x=0.4 with zero resistance critical temperature ($T_{c zero}$) of 77.6 K. On the other hand, electrical resistance measurements on $Tl_{1,y}Cu_ySr_{1,6}Yb_{0,4}CaCu_yO_{7,\delta}$ (x=0-0.5) series showed gradual decrease in T_{czero} followed by a sudden increase in T_c at x = 0.3. Further substitution of Cu at $x \ge 0.4$ however caused T_c to be suppressed. Electrical resistance measurement in Tl₀ sPb₀ sSr₂. $_xMg_xCa_0 _{x}Yb_0 _{2}Cu_2O_{7.5}$ (x=0-1.0) showed increasing semiconductor-like normal state behavior and gradual suppression of T_c with Mg. In addition, superconducting fluctuation behavior (SFB) in Tl_{1-x}Cu_xSr_{1.8}Yb_{0.2}CaCu₂O_{7-δ} (x=0.0-0.4), Tl_{1-x}Cu_xSr_{1.6}Yb_{0.4}CaCu₂O_{7-δ} (x=0-0.3), Tl₀ SPb₀ SSr_{2-y}Mg_yCa_{0.8}Yb_{0.2}Cu₂O_{7.8} (x=0) and Tl_{0.5}Pb_{0.5}Sr_{2-y}Yb_yCaCu₂O_{7.8} (x= 0.1-0.4) ceramics were analyzed by using Asmalazov-Larkin (AL) theory as a framework. In $Tl_{1-x}Cu_xSr_{1.8}Yb_{0.2}CaCu_2O_{7-\delta}$ (x=0-0.4), the analysis showed characteristic cross-over from 2D to 3D behavior with decreasing temperature. Cu substitutions in this series is suggested to give effect on c-axis coherence length, $\xi_c(0)$ and hole concentration of carrier. For Tl_{1-x}Cu_xSr_{1.6}Yb_{0.4}CaCu₂O_{7.6} (x=0-0.3) ceramics revealed 2D to 3D transition and showed Cu substitution affects the AL_{3D} constant and increases c-axis coherence length, $\xi_{d}(0)$. Excess conductivity of Tl_{0.5}Pb_{0.5}Sr_{2-x}Mg_xCa_{0.8}Yb_{0.2}Cu₂O_{7-b} ceramics (x=0.0) showed exclusively 1D to 2D transition behavior. In addition, superconducting fluctuation behavior in sintered polycrystalline samples of Tl_{0.5}Pb_{0.5}Sr₂. $_{x}Yb_{x}CaCu_{2}O_{7-\delta}$ (x=0.1-0.4) revealed transition from 2-D to 3-D behavior. This study also suggests that there is a close correlation between the amounts of Yb substitution and the behavior of AL constant (A). Fourier Transform Infrared (FTIR) spectroscopy analyses was performed on $Tl_{1,y}Cu_ySr_{1,6}Yb_{0,4}CaCu_2O_{7,8}$ (x=0-0.5) and TlosPbosSr2. $_{x}Mg_{y}Ca_{0.8}Yb_{0.2}Cu_{2}O_{7,\delta}$ (x=0-1.0) samples. In Tl_{1,y}Cu_ySr_{1.6}Yb_{0.4}CaCu₂O_{7,\delta} (x=0-0.5), the results showed CuO₂ planar oxygen mode observed was softened with increased Cu substitution indicating enhanced coupling between CuO₂ planes, FTIR absorption data for Tl₀ Pb₀ Sr_{2-y}Mg_yCa₀ $_{8}$ Yb₀ $_{2}$ Cu₂O₇₋₅ (x=0-1.0) indicate possible tilt of oxygen atoms in the CuO_2 plane as a result of unequal bond lengths and enhanced CuO_2 inter-plane coupling.

TABLE OF CONTENTS

TITLE PAGE

AUTHOR'S DECLARATION ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST FIGURES LIST OF ABBREVIATIONS		ii iii iv v viii ix xv xvi
СНА	PTER 1. INTRODUCTION	
1.1	Background	1
1.2	Problem statements	6
1.3	Objectives	8
1.4	Scope of study	9
1.5	Significances of study	10
СНА	PTER 2: LITERATURE REVIEW	
2.1	Introduction	11
2.2	Brief history of superconductivity	12
2.3	Basic properties of superconductors 2.3.1 Critical temperature (T_c) 2.3.1.1 Low T_c	15
	2.3.1.2 High <i>T_c</i>	15
	2.3.2 Meissner Effect 2.3.3 Types of Superconductors	19
	2 3 3 1 Type I	22
	2.3.3.2 Type II	22
2.4	Theory	22
	2.4.1 BUS incory 2.4.1.1 Coherence Length and Fermi valuativ	23
	2.4.1.1 Concrete Length and Ferril Velocity 2.4.2 Asmalazov-Larkin theory	24
2.5	Thallium-based superconductors	28
	2.5.1 The TI-1212 system	31
2.6	Previous studies	31

v

CHAPTER 1

INTRODUCTION

1.1 Background

Superconductivity is one of the interesting modern day discoveries that excite researchers all over the world. It is the phenomenon when materials below critical temperature (T_c) show zero electrical resistance (R=0) and zero magnetic field (B=0). Above T_c , it turns into normal state with non-zero resistance. Zero electrical resistance in superconductors means that the superconductors conduct electrical currents flow infinitely and incur no energy loss. The Meissner effect is the phenomena when magnetic fields are expelled from the interior of superconductors. This phenomena makes a magnet levitate above superconducting materials.

In 1911, conventional superconductivity with T_c less than 30 K was first discovered in solid mercury at 4.2 K by Heike Kamerlingh Onnes, a Dutch physicist. Subsequently, lead and niobium nitride was found superconducting at 7 K and 16 K, respectively. Other examples of conventional superconductors are Zn (T_c =0.88 K), Al (T_c =0.88 K), Sn (T_c =3.72 K), Hg (T_c =4.15 K), Pb (T_c =7.18 K), Nb (T_c =9.46 K), Nb₃Sn (T_c =18.05 K) and Nb₃Ge (T_c =23.2 K) (Doss, J. D. et.al (1989) & Tinkham, M. (1996)).

The next important discovery was in 1957 when John Bardeen, Leon Cooper, and Robert Schrieffer proposed a theory what is commonly called the BCS theory which successfully explained the mechanism of conventional superconductors (J. Bardeen et.al (1957)). Generally, the basic concept in this theory is about the pairing of electrons called Cooper pairs through interaction with the crystal lattice. Lattice vibrations namely