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ABSTRACT

Th e study invol ves four differen t compounds ofTISr1212 superconductors. There are TI I_
xCuxSr1.8Yb 0.2CaCU207-b (x=0.0-0.6) , T11-xCuxSrI.6Yb 0.4CaCU207-b(x=0-0.5), T1o.5Pbo.5Sr2
xM&Cao.8Y bO.2CU20 7-b (x=0-1.0) and Tlo.5Pbo.5Sr2-xYbxCaCu20 7-b (x = 0.1-0.4) series. All
the samples were synthesized using the solid state synthesis method. Temperature
dep endent electrical resistance measurements on TII-xCuxSrI.8Ybo.2CaCu20 7-b (x = 0.0
0.6 ) series showed the best superconducting behavior at x=O.4 with zero resistance
critical temperature (T; zero ) of 77.6 K. On the other hand , electrical resistance
mea surements on TII-xCuxSrI.6Ybo.4CaCu20 7-b (x=0-0 .5) series showed gradual decrease
in T; zero follow ed by a sudden increase in T; at x = 0.3. Further substitution of Cu at x ;:£>.4
however cau sed T; to be suppressed . Electrical resistance measurement in Tl o.5Pbo.5Sr2
xMgxCao.8Yb O.2CU207-b (x=O-I.O) showed increasing semiconductor-like normal state
beha vior and gradual suppression of T; with Mg. In addition, superconducting fluctuation
beha vior (SFB) in Tb -xCUxSfI.8Ybo.2CaCu20 7-b (x=O.O-O.4), TII-xCuxSr1.6Ybo.4CaCu20 7-0
(x=0-0 .3), Tl o.5Pbo.5Sr2-xMgxCao.8Ybo.2Cu20 7-b (x=O) and Tl o.5Pbo.5Sr2-xYbxCaCu207-b (x=
0.1-0.4) ceramics were analyzed by using Asmalazov-Larkin (AL) theory as a
fram ework. In TI I-xCuxSr1.8Ybo.2CaCu 207-b (x=O-O.4), the analysis showed characteristic
cro ss-o ver from 2D to 3D behavior with decreasing temperature. Cu substitutions in this
se ries is suggested to give effect on c-axis coherence length, i;lO) and hole concentration
of carrier. For TII-xCuxSrI.6Ybo.4CaCu20 7-b (x=O-O.3) ceramics revealed 2D to 3D
tran sition and showed Cu substitution affect s the AL 3D constant and increases c-axis
coherence length , i;lO) . Exce ss conductivity of Tl o.5Pbo.5Sr2-xM&Ca o.8Ybo.2Cu20 7-b
ceramics (x=O.O) showed exclu sively 1D to 2D transition behavior. In addition,
supe rconducting fluctuation beh avior in sintered polycrystalline samples of Tl o.5Pbo.5Sr2
xY bxCaCu20 7-b (x=0.1-0.4) reve aled tran sition from 2-D to 3-D beha vior. This study also
suggests that ther e is a close correlation between the amounts ofYb substitution and the
beha vior of AL constant (A) . Fourier Transform Infrared (FTIR) spectroscopy analyses
was performed on TI I_xCuxSr1.6Yb 0.4CaCU207-b (x=0-0.5) and Tl o.5Pbo.5Sr2
xMgtCao.8Yb O.2CU207-b (x=0-1 .0) samples. In T11-xCUxSfI.6Yb 0.4CaCU207-b (x=0-0 .5), the
result s showed CU0 2 planar oxygen mode observed was softened with increased Cu
subs titution indicating enhanced coupling between CU0 2 planes. FTIR absorption data
for T1o.5Pbo.5Sr2-xM&Cao.8YbO.2CU207-b (x=O-I.O) indicate possible tilt of oxygen atoms in
the CU0 2 plan e as a result of unequal bond lengths and enhanced CU0 2 inter-plane
coupling.

iii



TABLE OF CONTENTS

TITLE PAGE
AUTHOR'S DECLARATION
ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST FIGURES
LIST OF ABBREVIATIONS

CHAPTER 1: INTRODUCTION
1.1 Background
1.2 Problem statements
1.3 Objectives
1.4 Scope of study
1.5 Significances of study

CHAPTER 2: LITERATURE REVIEW
2.1 Introduction
2.2 Briefhistory of superconductivity

2.3 Basic properties of superconductors
2.3.1 Critical temperature (Tc)

2.3 .1.1 Low t;

2.3.1.2 High t:

2.3.2 Meissner Effect
2.3.3 Types of Superconductors

2.3.3.1 Type I
2.3 .3.2 Type II

2.4 Theory
2.4.1 BCS theory

2.4.1.1 Coherence Length and Fermi velocity
2.4 .2 Asmalazov-Larkin theory

2.5 Thallium-based superconductors
2.5.1 The Tl-1212 system

2.6 Previous studies

iii
iv
v

viii
ix

xvi

1
6
8
9
10

11
12

15

15

19

22
22

23
24
26
28
31
31



CHAPTER 1

INTRODUCTION

1.1 Background

Superconductivity is one of the interesting modem day discoveries that excite

researchers all over the world . It is the phenomenon when materials below critical

temperature (Tc) show zero electrical resistance (R=O) and zero magnetic field (B=O).

Above Tc, it turns into normal state with non-zero resistance . Zero electrica l resistance in

superconductors means that the superconductors conduct electrical currents flow

infinitely and incur no energy loss . The Meissner effect is the phenomena when

magnetic fields are expelled from the interior of superconductors. This phenomena

makes a magnet levitate above superconducting materials.

In 1911, conventional superconductivity with T; less than 30 K was first discovered in

solid mercury at 4.2 K by Heike Kamerlingh annes, a Dutch physicist. Subsequently,

lead and niobium nitride was found superconducting at 7 K and 16 K, respectivel y.

Other examples of con vention al superconductors are Zn (T; =0.88 K), Al (T; =0.88 K),

Sn (Tc =3.72 K), Hg (Tc =4.15 K), Pb (Tc =7.l8 K), Nb (Tc =9.46 K), Nb3Sn (Tc =18 .05

K) and Nb3Ge (Tc=23.2 K) (Doss , J. D. et.al (1989) & Tinkham , M. (1996)).

The next important discovery was in 1957 when John Bardeen , Leon Cooper, and

Robert Schrieffer proposed a theory what is commonly called the BCS theory which

success fully explain ed the mechanism of conventional superconductors (1. Bardeen et.al

(1957)). Generall y, the basic concept in this theory is about the pairing of electrons

called Cooper pairs through interaction with the crystal lattice. Lattice vibrations namely
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