ACCUMULATION OF NICKEL IN RUBIACEAE HYPERACCUMULATOR PLANTS IN KINABALU NATIONAL PARK, SABAH

MUHAMMAD IRFAN RIFNUR BIN ARIFFIN

Final Year Report Submitted in Partial Fulfilment of the Requirements Degree of Bachelor of Science (Hons.) Biology In the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

This Final Year Project Report entitled "Accumulation of Nickel in Rubiaceae Hyperaccumulator Plants in Kinabalu National Park, Sabah" was submitted by Muhammad Irfan Rifnur bin Ariffin, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Science, and was approved by

Madam Farnidah Bihti Jasnie Supervisor B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi Mara Kota Kinabalu Sabah

Mr. Ajimi Bin Jawan Project Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi Mara Kota Kinabalu Sabah

Ajis Bin Lepit (Ph.D) Head of Programme B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi Mara Kota Kinabalu Sabah

Date:

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENT	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	Х
ABSTRAK	xi
CILLETED 1 INTRODUCTION	

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of Study	4
1.4	Objective of Study	6
1.5	Scope of the Study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Heavy	Metal	8
	2.1.1	The presence of heavy metals in soil	9
	2.1.2	The importance of heavy metals	10
		2.1.2.1 The uses of heavy metals in plants	11
	2.1.3	Nickel metal	12
		2.1.3.1 The presence of nickel in plant	13
2.2	Ultram	afic Soil	14
	2.2.1	The ultramafic soil in the Sabah	15
2.3	Hypera	accumulator plants	18
	2.3.1	Nickel hyperaccumulator plants	19
	2.3.2	The vessel of nickel hyperaccumulator plant	21
2.4	The Ru	ubiaceae Family of Plant	22
	2.4.1	The hyperaccumulator species of Rubiaceae in	23
		Sabah	
2.5	Phyton	nining Technology	23
2.6	The Po	ortable X-Ray Fluorescence (pXRF)	25

CHAPTER 3 METHODOLOGY

3.1	Materi	als	26
	3.1.1	Raw materials	26
	3.1.2	Instruments	26
3.2	Determination of Nickel Hyperaccumulation in Rubiaceae		27
	Plants		
	3.2.1	DMG paper analysis	27

LIST OF FIGURES

Figure	Caption	Page
2.1	The necrotic legion at the tips of the leaf of soybean	14
2.2	The ultramafic soil at Sabah marked in red	16
2.3	The ultramafic soil at Kinabalu Park	17
3.1	The impregnated nickel - specific colorimetric - reagent	28
	dimethylglyoxime (DMG) white test paper.	
3.2	The pXRF scanned the herbarium specimens	29
3.3	The 99.5% Titanium plate used for better reflection of pXRF	29
	rays that increase the accuracy of pXRF	,
3.4	The setup during pXRF scanning of leaf length	30
3.5	The entrance of Mount Tombuyukon and Hyperaccumulator	30
	Nursery	
3.6	The drying and pressing process done to preparing the	31
	specimen before analysing with pXRF	
3.7	The setup of soil preparation before analysing with pXRF	32
4.1	Boxplot of the nickel intensity in all leaves of 68 genus of	34
	Rubiaceae family obtained at National Kinabalu Park	
	Herbarium.	
4.2	The box plot of nickel intensities (Cps/ua) of all Psychotria	35
	species scanned at Kinabalu Park Herbarium.	

ABSTRACT

ACCUMULATION OF NICKEL IN RUBIACEAE HYPERACCUMULATOR PLANTS IN SABAH

The ultramafic soil is fundamental element in producing hyperaccumulator plant due to its high metal concentration. The Rubiaceae family is well distributed over ultramafic soil has a very high potential recognize as a hyperaccumulator plant. Thus, the hyperaccumulator plant is very useful in phytomining technology because their ability to accumulate metal and live in the high metal concentration soil. This green technology was established because has potential to replace conventional mining hence reducing the pollution caused by conventional mining. Nickel is one of the valuable metal among other metal. Therefore, nickel hyperaccumulator plant is promising in phytomining technology. The use of portable X-Ray Fluorescence was fully utilized to scan the plant specimen and determine its metal concentration without destructing the specimen. Thus, scanning of the herbarium specimen is very efficient to find potential hyperaccumulator plants. A total of 2556 Rubiaceae herbarium plant specimens in Kinabalu Park, Sabah was scanned and found that Psychotria sarmentosa and Urophylum sp. are nickel hyperaccumulator plants. This is a new report of Urophylum sp. as a new nickel and cobalt hyperaccumulator plant. Moreover, the three samples of fresh Psychotria sarmentosa was collected at Mount Tombuyukon to determine its nickel concentration in different plant parts and leaf size. It is found that, Psychotria sarmentosa accumulate most of the nickel in its leaf (50567.29 \pm 1042.22 ppm) and middle range size of leaf (34.04cm < L < 51.11cm) has most nickel $(37269.86 \pm 923.06 \text{ ppm})$ than other sizes. Therefore, two species of Rubiaceae from Kinabalu National Park are hyperaccumulators. The nickel is concentrated on the middle size leaf. However, further research is eminent to authenticate and to determine their potential in phytomining.