UNIVERSITI TEKNOLOGI MARA

BIOREMEDIATION OF PETROLEUM SLUDGE FROM THE EXXON MOBIL PETROLEUM REFINING PLANT AT KERTEH, MALAYSIA

NOOR FAZREEN BINTI DZULKAFLI

Dissertation submitted in partial fulfillment of the requirements For the degree of Master of Science in Civil Engineering (Environmental)

Faculty of Civil Engineering

October 2007
ABSTRACT

Petroleum refineries generate huge volumes of petroleum sludge during the process of refining crude oil. It is well known that petroleum sludge contains toxic, mutagenic and carcinogenic compounds that constitute hazard to human and the environment. Applications of bioremediation in not a new method for treatment of petroleum hydrocarbons contaminations. With advances in biotechnology, bioremediation has become one of the most rapidly developing fields of environmental restoration. Petroleum hydrocarbons can be degraded by microorganisms such as bacteria, fungi and yeast. However, bacteria play the central role in hydrocarbon degradation. The driving force for petroleum biodegradation is the ability of microorganisms to utilize hydrocarbons to satisfy their cell growth and energy needs. Studies on the microbial processes to degrade hydrocarbon from several countries in arid region to date have established information on the best consortium of microorganisms to be used. However, very few reports are available on studies in tropical countries like Malaysia. Thus, this study investigates microbial species present in petroleum sludge that are capable of degrading hydrocarbon. Hydrocarbons used in this study include low chain hydrocarbon; n-decane, tetradecane, pentadecane and do-decane and also PAH namely; phenanthrene, anthracene and dibenzothiophene. A series of experiments were conducted to enrich and isolates bacteria strains that are capable of degrading the hydrocarbons. These were followed by hydrocarbon degradation test and identification of bacteria strains that are capable of degrading hydrocarbon. Hydrocarbon degradation tests were done by using microtiter plate technique with INT as the indicator. A total of 53 strains capable of degrading hydrocarbon were successfully isolated. Three of best strains were selected to be identified by using biochemical test. The best active strains were selected base on their ability to degrade PAH compound namely; phenanthrene, anthracene and dibenzothiophene. These three strains were identified as Clavibacter michiganesis ss insidiosus, Brevibacterium otitidis and Rhodococcus rhodochrus.

Keywords: Bioremediation, biodegradation hydrocarbon degrading bacteria, microtiter plate technique, petroleum sludge, poly aromatic hydrocarbons (PAHs).
Candidate’s Declaration

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This topic has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate: NOOR FAZREEN BINTI DZULKAFLI
Candidate’s ID No.: 2006651644
Programme: MASTER SCIENCE CIVIL ENGINEERING (ENVIRONMENTAL) (EC 774)
Faculty: FACULTY OF CIVIL ENGINEERING
Thesis Title: BIOREMEDIATION OF PETROLEUM SLUDGE FROM PETROLEUM REFINING PLANT

Signature of Candidate
Date: 10/12/2003
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Candidate's Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of the Study-Petroleum Hydrocarbon Sludge 1

1.2 Problem Statement 2

1.3 Objectives of the Study 3

1.4 Scope and Limitations of Work 4

1.5 Significance of Study 4

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5

2.2 Principles of Bioremediation 6

2.3 Bioremediation Strategies 7

2.3.1 In-situ Bioremediation 7

2.3.2 Ex-situ Bioremediation 8

2.4 Advantages and Disadvantages of In-situ and Ex-situ Bioremediation 11

2.5 Application of Bioremediation in the Petroleum Industry 12

2.6 Toxicology of petroleum components 13

2.7 Petroleum Hydrocarbons Composition and 15
CHAPTER 1

INTRODUCTION

1.1 Background of the Study-Petroleum Hydrocarbon Sludge

Petroleum is the most important source of energy in Malaysia. It is used for a variety of purposes including, transportation, power generation, polymer industries, textile industries and others. Throughout Malaysia, there are more than ten onshore petroleum refineries.

Petroleum refineries generate huge volumes of petroleum sludge during the refining of crude oil. One of the major problems faced by oil refineries is the safe disposal of petroleum sludge generated during the processing of crude oil (Mishra et al., 2001). The petroleum sludge generated generally contains crude oil, waste water and solid particles. It is well known that petroleum sludge contains toxic, mutagenic and carcinogenic compounds that constitute health hazard to human (Mishra et al., 2001). Issues on petroleum sludge are not only related to human risk but also to degradation of the environment. Improper disposal and handling of petroleum sludge contaminate soil and may pose a serious threat to groundwater (Bartha, 1986; Dibble and Bartha, 1979).

A variety of modern treatment methods have been suggested namely, land farming, incineration, chlorination, ozonation and combustion (Jacques et al., 2005; Mrayyan and Battikhi, 2005). However, these methods are costly.

Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial degradation of petroleum hydrocarbons. Long recognized as substrates supporting microbial growth, hydrocarbons are both a