NANO FLAT SHEET MEMBRANE FILTRATION USING SILICA SUGARCANE BAGASSE AS ADDITIVE FOR LEACHATE TREATMENT

HAMIZAH BINTI MOKHTAR

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Civil Engineering

October 2018
AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Hamizah Binti Mokhtar
Student I.D. No. : 2013876998
Programme : Doctor of Philosophy (EC950)
Faculty : Civil Engineering
Thesis Title : Nano Flat Sheet Membrane Filtration Using Silica Sugarcane Bagasse As Additive For Leachate Treatment

Signature of Student : ...
Date : October 2018
ABSTRACT

Membrane technology using ultrafiltration and nanofiltration membrane process had proven to be successful in treating physical and organic impurities from water and wastewater. However, this technology has its challenge due to its higher selectivity. The selectivity of membrane influenced by the materials used to fabricate a membrane. Recently, additive was added into membrane formulation to improve hydrophilicity, membrane charge and surface roughness. Silica is one of the additives in membrane formulation that has capability to resist chemical attack and high thermal stability. Silica can be extracted from various sources such as alkoxysilane, quartz, sand, silicon tetrachloride and tetraethyl orthosilicate. However, different types of silica produce different effects of membrane characteristics and performance. Therefore, this thesis is focused on the exploration of new membrane materials to develop a new flat sheet nanofiltration membrane using silica extracted from sugarcane bagasse as additives. The process involved in this study includes extraction of silica from sugarcane bagasse, characterization of silica sugarcane bagasse, dope formulation and fabrication using silica sugarcane bagasse, and characterization and performance of the newly developed nano flat sheet silica sugarcane bagasse additive membrane (SSAM). Morphology via Scanning Electron Microscopy (SEM) for SSAM showed that the addition of silica enhanced the macrovoid formation in sub layer of membrane and improve interconnectivity of the pore, hence, increase flux. High silica concentration increases solution viscosity and strong interaction with polymer able to delay dope precipitation and cause decreasing in size of pores, thus, increase salt rejection. Silica sugarcane bagasse is hydrophilic which can attract large amount of water which is 46 L/m²/hr to pass through membrane and increased salt rejection from 65.80% to 77.50%. This SSAM with weight percent 21 wt.%:71 wt.%:5 wt.%:3 wt.% of PSF:DMAc:PVP:Silica showed excellent performance in combination of aeration and membrane system for leachate treatment with the result of approximately 100% rejection of Copper (Cu), Chromium (Cr), Zinc (Zn), Nickel (Ni), Cadmium (Cd) and Iron (Fe). In conclusion, silica sugarcane bagasse is comparable to be as an alternative and sustainable source of membrane material which is additive. New membrane formulation determined from this research work tailored for leachate treatment, 21 wt.%:71 wt.%:5 wt.%:3 wt.% of PSF:DMAc:PVP:Silica is able to discharged treated leachate effluent that satisfy the Standards A requirement of Environment Quality Act (EQA) 2009.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIRMATION BY PANEL OF EXAMINERS</td>
<td>ii</td>
</tr>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER: ONE INTRODUCTION

1. Research Background 1
2. Application of Organic Silica in Membrane Formulation and Fabrication 8
3. Problem Statement 10
4. Objectives 11
5. Significance of Study 11
6. Scope of Work 12

CHAPTER: TWO LITERATURE REVIEW

1. Introduction 13
2. Solid Waste Scenario in Malaysia 13
3. Leachate Generation 16
 - Composition of Leachate 18
 - Characteristics of Leachate generated from Landfill in Malaysia 19
 - Biological Oxygen Demand (BOD) 21
 - Chemical Oxygen Demand 21
 - Heavy Metals 21
 - pH 22