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ABSTRACT

Fatigue crack nucleation and initiation at particles or defects in materials have been

the interest of many researchers over the past years . This is because the

understanding of theses phenomena would provide a better understanding of

production of new fatigue resistanc e materials. In this study a test was developed to

evaluate the fatigue properties and to observe fatigue crack nucleation and initiation

in sintered steel. The fatigue test was carried out on polished specimens which was

based on plate bending gives balanced biaxial tension. The experimental results

shows that there were mixed mode of crack nucleation and initiation such that most

cracks initiated at the interface of particles and matrix especially at high stress

values . Cracks were also observed to initiate at voids and beneath the surface.

Quenched speci mens which were tempered between temperature range of 300°C and

600°C shows similar crack initiation mechani sms. The significant differenc e

between as-rece ived and tempered specimens was that the number of cycles to fail

due to di fferences in material hardne ss and internal defect s. The results of the

experimentation are discussed in the light of possible micro crack toughening at the

crack tip and the presence of residual stresses due, to temperature changes. It is

believed that some effects of residual stresses at the surface and beneath playa role

in the nucleation of crack in sintered steel.



CHAPTER 1

INTRODUCTION

In the last few years, sintered steel has been developed for mass-production for

engineering applications that are subjected to large mechanical stresses. It is

therefore, necessary to determine the static and dynamic properties of this material.

Numerous works have been conducted to understand the properties of crack growth

both at sharp notch and notch root specimen. According to the literature review, the

behavior have been observed in the relation to fatigue crack growth and crack length

have been well understood but limited literature could be found on crack nucleation

and short crack mechanisms.

1.1 Historical Perspectives

Metal fatigue has been studied for the past 150 years. Form 1850 to 1875,

experiments were conducted to establish a safe alternating stress below which

failure would not occur. Nearly 100 years of research has been performed to

establi sh the effect of many variables on the influence of the long life fatigue

strength of metal. Many significant contributions were made during the 1960's.

Irwin et al. (1970) and others pioneered the development of fracture mechanics as a

practi cal engineering tool. Ewing and Humphrey did the first work on fatigue crack

initiation around 1900 to 1910. They prepared a specimen and examined the surface

grains with an optical microscope during the course of a fatigue test. They observed

formation of slip lines across grains and broadening into bands and eventualy

developed cracks in the broadened bonds. Then in the 1950's , the concept of a two-
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