UNIVERSITI TEKNOLOGI MARA

DETERMINATION OF THE EROSION RATE OF SUNGKAI RIVER

NOOR AZREEN BINTI JAMROO (2015165887)

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

Jan 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Noor Azreen Binti Jamroo
Student I.D. No.	:	2015165887
Programme	:	BSc in Surveying Science and Geomatic (Hons)
Faculty	:	Architecture, Planning and Surveying
Thesis	:	Determination of the erosion rate of Sungkai River

Signature of Student	:	
Date	:	January 2019

ABSTRACT

This study about the crucial phenomena causing the instability of the bank that is riverbank erosion. The problem is erosion that happens in Sungkai river at Hilir Perak Water Treatment Plant. Starting year 2013 was occur erosion at Hilir Perak Water Treatment Plant. Nevertheless, it becomes worse in 2014 that stated highest percentage of soil failure. This project aims to determine of the erosion rate of Sungkai River. The objective of this study is to identify the influence factor affecting to the erosion rates at riverbank, to evaluate the highly factor that affecting the erosion rate in years 2013 to 2015, lastly to analyze the erosion rate for three years based on the relationship between the predefined variables. Besides, for this thesis were used 3D Analyst and Spatial Analyst. From this method, can interpolate from point using Inverse Distance Weighted (IDW) technique for rainfall (R factor) and spatial analyst method to create surface for slope, contour, hillshade and so on. The other method for this study is used Weka software. For this method was to get the analyst of which factor that more influence to the erosion. However, the analyst must compare to the other variable such as R, K, LS and C factor. By using NDWI method, can get the C factor values for analyze the crop management compare with values from Department of Agriculture. The entire variables were used to calculate the soil loss per years. Before find the pattern of the erosion for three years, firstly determine the erosion rate for three years period. Data rainfall is a one factor of the influence in this problem. Lastly produce the location of the erosion of Sungkai River at Hilir Perak Water Treatment Plant map. In terms of overall determination, the erosion rate of Sungkai River should clearly shows in graph. Although, the pattern of the erosion it will easily identify. Some improvements are needed to make the erosion rate more understanding and easily to identified the pattern of the soil loss per years.

TABLE OF CONTENT

CON	ii	
AUTHOR'S DECLARATION		
ABSTRACT		
ACK	v	
TAB	vi	
LIST OF TABLES		
LIST	Γ OF FIGURES	x
CHA	APTER ONE INTRODUCTION	1
1.1	Background of study	1
1.2	Research Question	2
1.3	Problem Statement	2
1.4	Aim and Objectives	3
1.5	Scope and limitation of work	3
1.6	Significance of study	4
1.7	Thesis organization	4
1.8	Summary	5
CHA	APTER TWO LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Earthwork	6
2.3	River systems	7
2.4	Erosion	8
2.5	Riverbank failure	8
2.6	Numerical method	9
2.7	Satellite imagery	10
2.8	Summary	11

CHA	CHAPTER THREE RESEARCH METHODOLOGY				
3.1	Introduction				
3.2	Detail Methodology				
3.3	Study Area				
3.4	Project Planning				
3.5	Software				
	3.5.1	ERDAS Imagine 2014	16		
	3.5.2	ArcGIS 10.5 Software	17		
	3.5.3	WEKA version 3.7.4	17		
	3.5.4	ENVI Classic version 5.1	17		
3.6	Data Preparation				
3.7	Detail	ed Data	18		
	3.7.1	Rainfall data	18		
	3.7.2	Sediment data	19		
	3.7.3	Discharge data	20		
	3.7.4	Water level data	21		
	3.7.5	Satellite images	22		
	3.7.6	Base map Perak	23		
3.8	Data I	Processing	25		
	3.8.1	Geometric correction	25		
	3.8.2	Identify the most influential on erosion using WEKA	25		
	3.8.3	Density slice of soil and land use band using NDWI	26		
	3.8.4	Classification of satellite image using unsupervised	27		
	3.8.5	Analyze the erosion rate using satellite image in years 2013			
		and 2015	27		
CHA	PTER I	FOUR RESULTS AND ANALYSIS	29		
4.1	Introd	uction	29		
4.2	The model result of the most influence on erosion				
	4.2.1	Model result from WEKA	29		
	4.2.2	Evaluation model result based on the graph	34		
	4.2.3	Plotting result data from Department irrigation and Drainage	37		
4.3	Evaluate the highest influence that affecting to the erosion rate in				