Universiti Teknologi Mara

Smart Mirror Student Timetable Management System based on IoT Platform using Raspberry Pi

Nur Afiqah binti Zubir

Thesis submitted in fulfilment of requirements for Bachelor of Computer Sciences (Hons.) Data Communication and Networking

December 2018
STUDENT DECLARATION

I certify that this thesis and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

..
NUR AFIQAH BINTI ZUBIR
2016326677

DECEMBER 5, 2018
ABSTRACT

In the modern work, the tasks become more complex and difficult to manage which causes a lot of students complete their assignments during last minutes. This limitation of tools and devices around them which can only perform one task at a time makes the students’ life more miserable. To solve this problem, this project has developed a Smart Mirror Student Timetable Management System based on IoT Platform using Raspberry Pi. The Smart Mirror technology is one of the Smart Home device that can help the students to manage their time wisely. The aim of this project is to develop a Smart Mirror Student Timetable Management System based on IoT Platform using Raspberry Pi. For the time constraints, this project is focused on students with poor time management. So, this project will probably help these students in a smart and efficient way. In order to accomplish this project, the researcher has applied Waterfall method in the methodology phase. This method starts with requirement analysis phase, continued with planning phase, designing phase, development phase and finally testing phase. After the prototype has successfully developed, the testing is done by using functionality testing. The testing is carried on the website and the prototype itself to test whether they are functioning well or not. The result of the testing has been analysed and recorded respectively into a table formed.

Keyword: Internet of Things, Smart Mirror, Raspberry Pi, Student Timetable Management System
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>STUDENT DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Research Background 1
1.2 Problem Statement 2
1.3 Aim 3
1.4 Research Objectives 3
1.5 Research Scope 3
1.6 Research Significance 4

CHAPTER TWO: LITERATURE REVIEW

2.1 IoT 5
 2.1.1 IoT Architecture 5
 2.1.2 IoT Technologies 7
2.2 Raspberry Pi 8
 2.2.1 Raspberry Pi Performance and Architecture 8
2.3 Student Timetable Management System 10
 2.3.1 Principle of Timetable 10
 2.3.2 Design of Timetable Management System 11
2.4 Smart Mirror 11
 2.4.1 Smart Mirror Implementation 11
4.1.3 Adobe Dreamweaver 33
4.2 Development of Student Timetable Website 34
 4.2.1 Create Database 34
 4.2.2 Develop Student Timetable Website 35
4.3 Development of Smart Mirror Student Timetable 37
 Management System based on IoT Platform using Raspberry Pi
 4.3.1 Configuration of Raspberry Pi 38
4.4 Summary 40

CHAPTER FIVE: RESULT AND ANALYSIS

5.1 Experimentation 41
 5.1.1 Functionality Testing on Student Timetable Website 42
 5.1.2 Functionality Testing on Smart Mirror Student Timetable Management System based on IoT Platform using Raspberry Pi
5.2 Summary 47

CHAPTER SIX: CONCLUSION AND RECOMMENDATION

6.1 Conclusion 48
6.2 Limitation and Recommendation 50

REFERENCES 51

APPENDICES
APPENDIX A: Full Coding of Smart Mirror 54
APPENDIX B: Test Case for User 59