SYNTHESIS, CHARACTERISATION AND ANTI-CORROSION SCREENING OF Ni(II) N-BUTYL METHYL DITHIOCARBAMATE AND Ni(II) N-ETHYL BENZYL DITHIOCARBAMATE

NOR FARAH HIDA BT OTHMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017
This Final Year Project Report entitled “Synthesis, Characterization and Anti-Corrosion Screening of Ni(II) N-butylmethyl Dithiocarbamate and Ni(II) N-ethylbenzyl Dithiocarbamates” was submitted by Nor Farah Hida Bt Othman, in partial fulfilment of the requirement for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Nur Nadia Dzulkifli
Supervisor
B. Sc. (Hons.) Chemistry
Faculty of Applied Sciences
UniversitiTeknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah Negeri Sembilan

Dr. Nurul Farahana Kamaludin
Co-supervisor
Program Kesihatan Persekitaran dan Keselamatan Industri,
Pusat Pengajian Sains Diagnostic dan Kesihatan Gunaaan,
Fakulti Sains Kesihatan,
Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz,
5300 Kuala Lumpur

Nurul Huda Abdul Halim
Project Coordinator
B.Sc.(Hons) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah Negeri Sembilan

Mazni Musa
Head of Programme
B.Sc.(Hons) Chemistry
Faculty of Applied Sciences
Universiti Teknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah Negeri Sembilan

Date: ___________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statements 5
1.3 Significance of the Study 6
1.4 Objectives of the Study 8

CHAPTER 2 LITERATURE REVIEW

2.1 The synthesis of dithiocarbamates (DTCs) and metal complexes 9
2.2 Characterization of dithiocarbamates (DTCs) and metal complexes 11
2.2.1 Elemental Analysis (CHNS) 11
2.2.2 Fourier Transform Infrared (FT-IR) 13
2.2.3 Ultraviolet-visible (UV-Vis) 15
2.3 Mode Coordination 15
2.4 Applications 17
2.4.1 Industry and Agricultural 17
2.4.2 Biological 17
2.4.3 Anti-corrosion 18
2.4.4 Mercury (Hg) removal 19

CHAPTER 3 METHODOLOGY

3.1 Materials 21
3.1.1 Chemicals 21
3.1.2 Apparatus 21
3.3.3 Instruments 21
3.2 Methods 22
3.2.1 Synthesis of Ni(II) N-butylmethylidithiocarbamate, Ni[BuMedtc]₂ 22
3.2.2 Synthesis of Ni (II) N-ethylbenzyldithiocarbamate, Ni[EtBenzdtc]₂ 23
3.3 Characterization
 3.3.1 Fourier-Transform Infrared (FT-IR) 24
 3.3.2 Ultraviolet-visible (UV-VIs) 24
 3.3.4 X-ray Crystallographic 24
 3.3.5 Melting point 25
 3.3.6 Gravimetric Analysis 25
 3.3.7 Molar Conductivity 25
3.4 Corrosion Inhibition Study 26
 3.4.1 Preparation of Solutions 26
 3.4.2 Weight Loss Method 26

CHAPTER 4 RESULTS AND DISCUSSION
4.1 Synthesis of Ni(II) complexes 28
4.2 Melting point 29
4.3 Infrared Spectral Data 29
4.4 Ultra-violet Visible Spectroscopy (UV-Vis) 36
4.5 Gravimetric Analysis 39
4.6 Molar conductivity 40
4.7 X-ray Crystallography Study 40
4.8 Corrosion Inhibition Study 45

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion 52
5.2 Recommendations 54

CITED REFERENCES 55
APPENDICES 59
CURRICULUM VITAE 77
SYNTHESIS, CHARACTERISATION AND ANTI-CORROSION SCREENING OF Ni(II) N-BUTYLMETHYL DITHIOCARBAMATE AND Ni(II) N-ETHYLBENZYL DITHIOCARBAMATE

Two dithiocarbamates complexes which are Ni(II) N-butylmethyl dithiocarbamate, Ni[BuMedtc]$_2$ and Ni(II) N-ethylbenzyl dithiocarbamate Ni[EtBenzdtc]$_2$ were successfully synthesised using in situ method. Both complexes were characterised by FT-IR and UV-Vis spectroscopy, gravimetric analysis, molar conductivity, melting point and X-ray Crystallographic analysis. From IR spectroscopy, the important stretching bands which are v(C=N) and v(C=S) were appeared in the range of 1508-1518 cm$^{-1}$ and 948-967 cm$^{-1}$ respectively. The absence of v(N-H) bands after complexation in spectra of both complexes proved that the formation of complexes have been take place. For UV-Vis spectroscopy, there are absorption peak observed in the Ni[BuMedtc]$_2$ and Ni[EtBenzdtc]$_2$ at 325 nm and 330 nm respectively. It is indicated to the n-π^* transitions. At more than 400 nm, there was absorption peak appeared which is indicated to the d-d transitions of Ni(II) complexes. The melting points of both complexes were higher than 300 °C. The molar conductivity showed that Ni[BuMedtc]$_2$ and Ni[EtBenzdtc]$_2$ were non-electrolyte. The gravimetric analysis showed the percentage of Ni(II) in Ni[BuMedtc]$_2$ was 7.5% meanwhile in Ni[EtBenzdtc]$_2$ was 5.98%. For X-ray crystallographic analysis, only Ni[BuMedtc]$_2$ that was successfully produced single crystal that suitable for this analysis. The results obtained showed that Ni[BuMedtc]$_2$ is four-coordination tetrahedral geometry and adopted to hexagonal system with the crystal parameter: $a = 25.544(10)$ Å, $b = 25.544(10)$ Å, $c = 7.018(5)$ Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\delta = 120^\circ$ and $Z = 9$. The corrosion inhibition study showed that C2 has higher corrosion inhibitor efficiency than Ni[BuMedtc]$_2$. From this study also showed that the inhibitor efficiency increased as the concentration of inhibitor increased.