INVESTIGATION OF STRESSES ON A FLAT PLATE WITH A HOLE USING EXPERIMENTAL TECHNIQUES AND COMPARING THE RESULTS USING ALGOR FINITE ELEMENT PROGRAMME

A project report presented in partial fulfillment of the requirement for the award of Diploma in Mechanical Engineering of The Mara Institute of Technology, Malaysia

By:

ZULKIFLI BIN SHARUDIN
SHAHRUL NIZAR BIN MD. SALLEH
SURIYATI BTE. SUPONO

DEPARTMENT OF MECHANICAL ENGINEERING
MARA INSTITUTE OF TECHNOLOGY
SHAH ALAM, SELANGOR

DIS-MAY 1997
INTRODUCTION

The aim of our project is making a research about the characteristic of stress which existed at a flat plat with a tensile force applied to the plats. The flat plat used in our project here was bored in a circular and elliptical hole, so that we could determined the effect of stress concentration factor through the values of stress we’ve got.

This research was done by using sketches in all process with 2 techniques:

a) Experimental Techniques

b) Algor FEA programme

After all the values we needed from both techniques determined, the next method was comparing all the results of stresses from both methods.

From all the results in the comparison between algor and experiment techniques done, conclusion and all the comments were explained in the report.

The main objective of this research:

1. Determined the uses of Algor FEA in engineering design.

2. The uses of Algor FEA in doing certain project, such as save times and energy in designing and also comparing the methods nowadays.
CONTENTS

1. INTRODUCTION 1-2
2. GENERAL STRESS ANALYSIS 3-17
3. EXPERIMENTAL TECHNIQUES

(A) PRINCIPLE OF TENSILE TESTING

1.0 Definition of Tensile Testing 18
2.0 Percentage Elongation 19-20
3.0 Maximum Force 20
4.0 Stress (Normal Stress) 20
5.0 Yield Stress 20-21
6.0 Tensile Strength 21
7.0 Proof Stress Total Elongation (Rt) 22

(B) Test Piece

1.0 Shape And Dimensions 23-25
2.0 Types 25
3.0 Preparation Of Test Pieces 26-29
4.0 Accuracy Of Testing Machine 29-32
5.0 Method Of Gripping 32

(C) Testing Techniques

1.0 Factors Affecting The Rate Of Straining 33
2.0 Determination Of Testing System Characteristics 33
3.0 Application Of K 34
4. EXPERIMENT DONE - USING EXPERIMENTAL TECHNIQUES

1.0 Speciment Material 35
2.0 Types Of Specimen 35
3.0 Specimen Layout 36-37
4.0 Machine Used To Prepare The Specimens 37
5.0 Machine Used To Run The Experiment 38
6.0 Experiment Results 39
7.0 Conclusions 40

5. FEA METHOD

1.0 Introductory Definition 41-42
2.0 Finite Element Terminologies 42
3.0 Steps Of Finite Element Analysis 43-44
4.0 Displacement Based On Finite Element Method 44-47
5.0 Principle Of Virtual Work 47-48
6.0 Summarization 48-49
7.0 Stiffness Matrix 49-53
8.0 2 - Dimensional Elements 54-56
9.0 Shape Function 57-60
10.0 Finite Element analysis Of 2-D Elasticity 61-70
11.0 Numerical Integration 71
12.0 Selection Of Gauss Point 72
13.0 Some Considerations Based On /J/ Of An Element 73-75
14.0 Modelling Guidelines 76-78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0</td>
<td>Modelling Consideration</td>
<td>78-80</td>
</tr>
<tr>
<td>16.0</td>
<td>Finite Element Method</td>
<td>81</td>
</tr>
<tr>
<td>17.0</td>
<td>Modelling Considerations</td>
<td>81-82</td>
</tr>
<tr>
<td>6.</td>
<td>EXPERIMENT DONE - USING ALGOR F.E.A. PROGRAMME</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Algor F.E.A. System</td>
<td>83</td>
</tr>
<tr>
<td>2.0</td>
<td>Model Analysis Flow</td>
<td>84</td>
</tr>
<tr>
<td>3.0</td>
<td>Programming</td>
<td>85-86</td>
</tr>
<tr>
<td>4.0</td>
<td>Experiment Results</td>
<td>87</td>
</tr>
<tr>
<td>5.0</td>
<td>Conclusion</td>
<td>88</td>
</tr>
<tr>
<td>7.</td>
<td>ADVANTAGES & DISADVANTAGES OF F.E.A SOFTWARE</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Advantages</td>
<td>89</td>
</tr>
<tr>
<td>2.0</td>
<td>Disadvantages</td>
<td>90</td>
</tr>
<tr>
<td>8.</td>
<td>CONCLUSIONS</td>
<td>91</td>
</tr>
<tr>
<td>9.</td>
<td>REFERENCES</td>
<td>92</td>
</tr>
</tbody>
</table>

ATTACHMENTS