A STUDY ON THE SINTERED COMPONENTS USAGE IN MALAYSIAN INDUSTRIES

,

MAZHAIRI BIN MOHAMAD DIPLOMA IN MECHANICAL ENGINEERING

FACULTY OF MECHANICAL ENGINEERING DEPARTMENT MARA INSTITUTE OF TECHNOLOGY SHAH ALAM

1998

-

• •

CHAPTER 1

INTRODUCTION

Powder metallurgy (P/M) has the distinction of being at the same time one of the oldest and one of the most modern methods know for the fabrication of the metal articles. In prehistoric times, powder metallurgy techniques were used to process metals with melting point above those attainable (or, in some instances, practical) by means of the technology which then exited. Development of these techniques probably began with iron in the from of sponge produced by reduction of iron oxide in charcoal furnaces. This material was subsequently forged into solid iron or steel. The ancients produced some rather extraordinary materials by utilizing these methods.

Powder materials were first press-bonded in the early 1800's in a manner similar to that employed today. It was in the 1920's that the process was really first used commercially with the development of the porous bronze bushing and the related techniques for mass production.

1

Powder metallurgy, as it is practiced today, has expanded to become a very pervasive technology. While not large in the sense of tons of materials processed when compared with casting or forging, for instance, P/M is nonetheless an extremely important industrial technique. An automobile, for instance, may employ upward of 50 P/M components can be found in washing machines, bicycles and lawnmower. Farm machinery and industrial hydraulic equipment are large users. Data processing equipment, office copiers, postage meters and similar machines may actually have more that a hundred P/M parts designed into them.

For the outdoorsman, the fishing reel and the firearm both are possible applications of powder metallurgy. The watch you wear may have a P/M case. Tape deck and phonograph turntables, as well as TV sets also utilize components made by powder metallurgy.

In addition, air crafty engines depend on P/M for several of the high-performance alloys which allow them to operate safely and more efficiently. Tool steels have also seen significant improvements made possible though P/M. we could continue to extend this catalog of usage, but the point has been made: P/M has become an important technology to a large segment of industry.

TABLE OF CONTENTS

Acknowledgement	1
Table of content	11
CHAPTER ONE	
1.0 Introduction	1
1.2 Powder Metallurgy Process	3
1.2.1 Mixing and blending	3
1.2.2 Pressing or compacting	3
1.2.3 Sintering	11
1.2.4 Finishing operations	14
1.3 Advantages of PM components	16
1.4 Applications of PM components	18

CHAPTER TWO

2.0 Usage of PM components in Malaysian Industries		20
2.1 Sumitomo Electric sintered component (M) Sdn Bhd		21
2.1.1 Location		21
2.1.2 Introduction	:	21
2.1.3 Distribution of Product Manufactured		22
2.1.4 Product Manufactured		23
2.1.5 Primary Data		24

• • •

2.2 Diamet Klang (M) Sdn Bhd	25
2.2.1 Location	26
2.2.2 Introduction	26
2.2.3 Product Manufactured	27
2.2.4 Distribution of Product Manufactured	27
2.2.5 Primary Data	28
2.3 Porite (M) Sdn Bhd	31
2.3.1 Location	31
2.3.2 Introduction	31
2.3.3 Distribution of Product Manufactured	32
2.3.4 Primary Data	33

CHAPTER THREE

3.0 Research work on PM components	36
3.1 Metal Technology Laboratory of SIRIM	37
3.2 Applied Science Department ITM	40
3.3 Federation of Malaysian Industries (FMM)	41

CHAPTER FOUR

4.0 Conclusion	42
4.1 Conclusion	42

Reference

Appendixes

,

43

•

•