SOLAR PHOTOCATALYTIC DEGRADATION OF FOOD DYE (TARTRAZINE) USING ZINC OXIDE CATALYST

NOR AIREEN BINTI ABD RAHIM

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

SOLAR PHOTOCATALYTIC DEGRADATION OF FOOD DYE (TARTRAZINE) USING ZINC OXIDE CATALYST

Food dyes are used in food processing industries as coloring and additive so that the food can be stored for a long time. The effluent discharged from the industries has become a serious issue as it can cause water pollution, harm aquatic life, nature and also human beings. Solar photocatalytic degradation was widely used to degrade most of the dyes in wastewater due to its high effectiveness. The objectives of this study are to investigate the effectiveness of degradation of Tartrazine using the photocatalytic process by using ZnO as photocatalyst and sunlight as the irradiation source. Other than that, this study is conducted to compare the percentage degradation of Tartrazine at different conditions which are amount of photocatalyst, pH of dye solution, exposure time and presence and absence of sunlight and photocatalyst. The degradation of Tartrazine was analyzed by using UV-Vis spectrophotometer. Firstly, to determine the optimum weight of ZnO, ZnO was added at different weights which were 0 mg, 10 mg, 20 mg, 30 mg, 40 mg and 50 mg. Then, the optimum pH of dye solution was determined by using different pH which were pH 6, pH 7, pH 8, pH 9, pH 10 and pH 11. From the absorbance obtained from UV-Vis spectrophotometer, the concentration of dye in the solution was calculated. Then, the percentage of degradation can be calculated by using the concentration of dye. The amount of photocatalyst ZnO must be added at the optimum weight which was 20 mg so that more hydroxyl radical produced. The optimum pH for the Tartrazine solution was pH 6. The percentage of degradation of Tartrazine decreased as the pH of the solution was increased. For the degradation with ZnO catalyst and with solar radiation, the optimum time obtained was lowest which was 1 hour. This condition also was the most effective condition compared to other condition because the percentage of degradation was the highest (93.91±0.57)%. The other conditions used were presence of catalyst absence of sunlight, absence of catalyst presence of sunlight and absence of both catalyst and sunlight. Both catalyst and solar radiation were needed to achieve highest efficiency of photocatalytic process because both helped in the formation of hydroxyl radical.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1 INTRODUCTION

Background Study	1
Problem Statement	2
Significance of Study	3
Objective of Study	4
	Problem Statement Significance of Study

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Wastewater from Food Industry	5
2.3	Dye	6
2.4	Waste Water Treatment Method	7
2.5	Solar Photocatalytic Degradation	8
2.6	Zinc Oxide	10

CHAPTER 3 METHODOLOGY

3.1	Materi	als	11
	3.1.1	Tartrazine Dye	11
	3.1.2	Zinc Oxide	11
	3.1.3	Sodium Hydroxide (NaOH) And Hydrochloric Acid (HCl)	12
3.2	Instrur	nents	12
3.3	Metho	d	12
	3.3.1	Photocatalytic Degradation Process	13
	3.3.2	Determination of Maximum Wavelength of Tartrazine	
		Solution	13
	3.3.3	Calibration Curve of Tartrazine Solution	13
	3.3.4	Determination of Optimum Weight of ZnO	14
	3.3.5	Determination of Optimum pH of Tartrazine Solution	14
	3.3.6	Determination of Optimum Time of Photocatalytic	
		Degradation	15
		3.3.6.1 Degradation without Catalyst ZnO without	
		Sunlight	15

	3.3.6.2 Degradation without Catalyst ZnO with Sunlight	16
	3.3.6.3 Degradation with Catalyst ZnO without Sunlight	16
	3.3.6.4 Degradation with Catalyst ZnO with Sunlight	16
3.3.7	Determination of the Effectivity of Photocatalytic Process	17

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Maximum Wavelength of Tartrazine	18
4.2	Determination of Optimum Weight of ZnO	19
4.3	Determination of Optimum pH of Tartrazine Solution	22
4.4	Determination of Optimum Time of Photocatalytic Degradation	25
4.5	Determination of the Effectivity of Photocatalytic Process	28
CHA	PTER 5 CONCLUSION AND RECOMMENDATIONS	30
CITE	CD REFERENCES	31
APPH	ENDICES	36

AT LENDICED	50
CURRICULUM VITAE	37

.

LIST OF TABLES

Table	Caption	Page
4.1	Maximum Wavelength of Tartrazine	19
4.2	Intensity of Sunlight Radiation (for Weight)	20
4.3	Optimum Weight of ZnO	21
4.4	Intensity of Sunlight Radiation (for pH)	23
4.5	Optimum pH of Tartrazine Solution	23
4.6	Intensity of Sunlight Radiation (for Time)	26
4.7	Optimum Time for Various Conditions	26
4.8	Percentage of Degradation for All Conditions	29