REDESIGNING AN INSTITUTIONAL BUILDING FOR LOW-ENERGY USING ENERGY-10 SOFTWARE

PREPARED BY:

RICHARD ANYI
CENDRIC MASUIL @ALEXANDER

NOVEMBER 1999
ABSTRACT

A simulation study on the thermal performance has been done on tropical institutional building at Shah Alam. The Energy-10 software was used for this purpose and the building chosen was the medium sized Faculty of Information Technology and Quantitative Science building at Universiti Teknologi MARA.

The main objectives of the project were to study the energy consumption, to analyze the possible energy saving by redesigning the building parameters and to make recommendations on the possible energy efficient designed strategies.

Eight cases were studied, including the reference case where existing building parameters were considered. It was found that a minimum of 10% of the total annual energy consumption could be saved by applying some energy efficient strategies while a maximum saving of 70% could be produced if all the design strategies including daylighting in the software were considered.

The capabilities and limitations of the software are discussed. Suggestions for improvement of the software and recommendations for energy efficient building design in a tropical setting are also included in this report.
TABLE OF CONTENTS

CONTENTS

ACKNOWLEDGEMENT I

ABSTRACT II

TABLE OF CONTENTS

CHAPTER ONE

1 INTRODUCTION 1

1.1 DEFINITION 2

1.1.1 Energy-efficient strategy 2

1.1.2 Daylighting 3

1.1.3 HVAC System 3

1.1.4 Materials 4

1.1.5 Lighting 5

1.1.6 Shading 5

1.2 DESIGN AND ANALYSIS TOOL 6

1.2.1 Energy-10 6

1.3 OBJECTIVES 7

1.3.1 To study the Energy-10 software 7

1.3.2 To study energy consumption of present building 7

1.3.3 To redesign existing institutional building for low energy building using Energy-10 software 7

1.3.4 To analyze the possible energy savings in building 8

1.3.5 To recommend the design parameters for energy efficient building 8

1.4 SUMMARY 8

CHAPTER TWO

2 THEORY, EQUATIONS AND CALCULATION 10

2.1 FUNDAMENTALS OF HUMAN COMFORT-Definitions 10

2.1.1 Temperatures 10

2.1.2 Conduction, Convection and Radiation 10

2.1.3 Air Volume and Movement 11

2.1.4 Activity and Clothing 12

2.1.5 Air Purity 12

2.1.6 Humidity 12

2.1.7 Ionization 12

2.2 SOLAR RADIATION IN MALAYSIA 13

2.3 LOAD SOURCES 13

2.3.1 Sensible 13

2.3.2 Latent 14

2.3.3 Steam Loads 14

2.3.4 Internal Loads 15

2.4 HEAT GAINS 15

2.5 COOLING LOAD 16

2.6 EQUATIONS FOR BUILDING MATERIALS CALCULATION 19
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.1 Unit for Heat Flow</td>
<td>19</td>
</tr>
<tr>
<td>2.6.2 Heat Loss</td>
<td>20</td>
</tr>
<tr>
<td>2.6.3 Heat Gain</td>
<td>22</td>
</tr>
<tr>
<td>2.6.4 Infiltration</td>
<td>23</td>
</tr>
<tr>
<td>2.7 SAMPLE OF CALCULATION</td>
<td>24</td>
</tr>
</tbody>
</table>

CHAPTER THREE

3 INTRODUCTION

3.1 ENERGY EFFICIENT STRATEGIES

3.1.1 Daylighting
3.1.2 Glazing
3.1.3 Shading
3.1.4 Energy Efficient Lighting
3.1.5 Lighting Control
3.1.6 Insulation
3.1.7 Air Leakage Control
3.1.8 Thermal Mass
3.1.9 Passive Solar Heating
3.1.10 Natural Ventilation
3.1.11 Economizer Cycle
3.1.12 Exhaust Air Heat Recovery
3.1.13 High Efficiency HVAC
3.1.14 HVAC Control
3.1.15 Evaporative Cooling
3.1.16 Solar Hot Water Heating

3.2 ENERGY-10

3.2.1 Autobuild
3.2.2 Reference Case
3.2.3 Low-Energy Case
3.2.4 Apply
3.2.5 Rank
3.2.6 Using Energy-10 to incorporate the Energy Efficient Strategies
3.2.7 Steps to use Apply Features
3.2.8 Steps to use Rank Features
3.2.9 Steps to Customize Apply and Rank Actions

3.3 FTMSK BUILDING

3.3.1 Computer Lab Parameters and Materials
3.3.2 Lecturer’s office Parameters and Materials

CHAPTER FOUR

4 METHODOLOGY

4.1 PRIMARY METHODOLOGY

4.1.1 Study of Energy-10 Software
4.1.2 Interviews Authorities