UNIVERSITI TEKNOLOGI MARA

ARTIFICIAL INTELLIGENCE BASED TECHNIQUE FOR PREDICTION OF PARTIAL DISCHARGE INCEPTION VOLTAGE IN A VOID OF SOLID DIELECTRIC

SITI SALWANI BINTI SAMAT

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

October 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Siti Salwani Binti Samat
Student I.D. No.	:	2010442182
Programme	:	Master of Sciences (EE 780)
Faculty	:	Faculty of Electrical Engineering
Title	:	Artificial Intelligence Based Technique for Prediction of Partial Discharge Inception Voltage in a Void of Solid Dielectric
Signature of Student	:	States .
Date	:	October 2014

ABSTRACT

Partial discharge (PD) is an important issue since it is considered as one of the greatest threats to insulation system of high voltage equipment. Existence of PD signifies that there is a weak point in an electrical insulation system and the existence of PD not only indicates that electrical aging is occurring, but also mechanical, thermal or environmental aging processes may be present. Materials such as solid, liquid and gaseous that are used for insulation purpose are imperfect and always contaminated. Most of the solid insulation has impurity in the form of air bubbles (void) which created a small fragile zone in the insulator during the manufacturing process and is a common source of PD. Due to the void, the insulation region is weakens resulting in the appearance of PDs with the application of high voltage. On the other hand, partial discharge inception voltage (PDIV) or also known as the breakdown voltage is the lowest voltage at which the PD events are detected. The PDIV due to PD in a void is a random phenomenon. The designing of an insulation system depends critically on the magnitude of this voltage. It is crucial to comprehend the property of the insulating materials for optimal solution in terms of insulating ability and costing. Therefore, accurate PD and PDIV models with the presence of void are highly needed to develop solid insulating materials with high breakdown strength. Lacking of these PD models will lead to difficulties in understanding the PD behavior and characteristics. As a result, assessing the insulation condition becomes a complicated process. In addition to that, an accurate artificial neural network (ANN) PD prediction system shall be the solution to help the electrical engineers in general and high voltage engineers particularly to develop a high quality insulation material that is more reliable and cost effective. This thesis presents an artificial intelligence based technique for partial discharge inception voltage (PDIV) prediction in a void of solid dielectric. This study involves the development of a MATLAB Simulink model for single void of solid dielectric for PD characterization. It also involves the development of hybrid ANN evolutionary programming (EP) for the prediction of PDIV of solid dielectric of different sizes of void. This study has also implemented an optimization technique using EP to improve the accuracy of the prediction system by finding an optimal number of learning rate and momentum constant. EP is an express search technique that is widely chosen to simplify the calculation process and also to fine tuning the result. The result of simulations has proven that the input signals such as supply voltage and supply voltage frequency are important for PD characterization. Comparative studies were done in term of the accuracy of the prediction system that was evaluated by the value of correlation coefficient, R. The result showed that the optimized ANN has able to produce a high value of R near to unity and the error was reduced tremendously. The convergence and generalization ability of the combined ANN-EP has improved outstandingly with the optimization process.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	Page ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	Х
LIST OF NOMENCLATURE	xii

CHAPTER ONE: INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objective of Study	3
1.4	Significance of Study	4
1.5	Scope and Limitation of Study	4
1.6	Organization of Thesis	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	6
2.2	Partial Discharge (PD) Detection Methods	6
2.3	Artificial Neural Network Modelling for PD Prediction	8
2.4	Optimization Technique for ANN	11
2.5	Summary	13

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Introdu	uction	15	
3.2	Resear	esearch Framework		
3.3	Partial Discharge Materials		19	
	3.3.1	Introduction	19	
	3.3.2	Proposed Partial Discharge Model	20	
	3.3.3	Partial Discharge Detection	23	

3.4	Propos	ed Artificial Neural Network (ANN) Based Approach for	24		
	Partial Discharge Inception Voltage (PDIV) Prediction				
	3.4.1	ANN Model Development	25		
	3.4.2	Prediction of PDIV	25		
		3.4.2 [a] Data Collection and Partitioning	27		
		3.4.2 [b] Neural Network Design	28		
		3.4.2 [c] Training Process	28		
		3.4.2 [d] Testing Algorithm	29		
3.5	Optimi	ization of the ANN using Evolutionary Programming (EP)	29		
	3.5.1	Optimization Technique using Hybrid of ANN and EP	30		
		3.5.1 [a] Initialization	32		
		3.5.1 [b] Fitness Evaluation	32		
		3.5.1 [c] Mutation	32		
		3.5.1 [d] Combination	33		
		3.5.1 [e] Selection	33		
		3.5.1 [f] Convergence Test	34		
3.6	Summ	ary	34		
CHA	PTER F	OUR: RESULTS AND DISCUSSION			
4.1	Introdu	uction	35		

4.2	MATLAB Simulink Single Void Model for PD Analysis		
	4.2.1	Effect of Variation of Supply Voltage Values to Maximum	35
		PD Amplitude	
	4.2.2	Effect of Variation of Supply Voltage Frequencies to Maximum	41
		PD Amplitude	
4.3	ANN Model for Optimization		
	4.3.1	Effect of Number of Neurons, Number of Hidden Layer and	46
		Transfer Function on the R Values	
	4.3.2	Effect of Learning Rate (α) to PDIV Prediction	50
	4.3.3	Effect of Momentum Rate (β) to PDIV Prediction	52
4.4	ANN-EP Based Technique for Identification of Learning Rate		
	(α) and Momentum Rate (β)		
	4.4.1	R Values of ANN-EP for Number of Iterations, N=1000	55
	4.4.2	R Values of ANN-EP for Number of Iterations, N=500	56