COMPETITIVE ADSORPTION OF Pb (II), Ni (II) AND Cu (II) FROM AQUEOUS SOLUTIONS ON THIOUREA SPENT GRATED COCONUT

NUR NAJIHAH BINTI DILAH

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

COMPETITIVE ADSORPTION OF Pb (II), Ni (II) AND Cu (II) FROM AQUEOUS SOLUTIONS ON THIOUREA SPENT GRATED COCONUT

The potential of thiourea spent grated coconut (TSGC) as an adsorbent for the removal of Pb²⁺, Cu²⁺, and Ni²⁺ ions from aqueous solutions in ternary system was investigated. The influence of pH, contact time and initial metal concentration were studied in batch experiments at room temperature (298 K). The TSGC used in this study was characterized by FTIR spectroscopy and it was found that -OH, -NH2, -COO⁻, C-O-C and C=S groups were present. Complexation was one of the main mechanisms for the removal of Pb²⁺, Cu²⁺, and Ni²⁺ ions as indicated by FTIR spectra. The pH_{zpc} value of the TSGC was 6.60 and the maximum adsorption for metal was found at pH 4. The adsorption was rapid at the first 5 minutes of contact, with the uptake of 72.89% for Cu²⁺ ions, 32.44% for Pb²⁺ ions and 16.19% for Ni²⁺ ions and equilibrium was attained in 60 min of agitation. Kinetic studies showed a good correlation coefficient for the pseudo second order kinetic model. Langmuir and Freundlich models were applied to describe the adsorption of Pb²⁺, Cu²⁺, and Ni²⁺ ions onto TSGC. Langmuir model fitted the equilibrium data for Pb²⁺ and Cu^{2+} only with $R^2 > 0.95$. The maximum adsorption capacities of Pb^{2+} , Cu²⁺, and Ni²⁺ ions determined from initial concentrations of 0.10 to 1.00 mmol/L were 0.3155, 1.3832 and 0.2370 mmol/g respectively, and in the sequence $Cu^{2+} > Pb^{2+} > Ni^{2+}$. The heavy metal ions bound on TSGC were poorly desorbed using 0.10 M of HCl solutions. Based on FTIR spectra, isotherm and desorption studies, it can be concluded that the dominant mechanism was complexation and TSGC showed selective adsorption towards Cu^{2+} ion.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ill
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	VIII
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1 INTRODUCTION

1.1 Back	ground	1
1.1.1	Heavy metals	1
1.1.2	Cu, Ni, Pb on health impacts	2
1.1.3	Cu, Ni, Pb in environment	4
1.2 Prob	lem statement	5
1.3 Scop	be of study	7
1.4 Obje	ctives of the study	8

CHAPTER 2 LITERATURE REVIEW

2.1 Conce	pt of adsorption	9
2.1.1	Adsorption process	9
2.1.2	Mechanism of biosorption	11
2.2 Proper	ties of agricultural or plant waste adsorbent	12
2.30ther s	tudies using agricultural waste for heavy metal removal	14
2.3.1	Apple pomace and coconut	15
2.3.2	Chitosan	16
2.3.3	Peat	18
2.4Modifi	cation on agricultural/plant biosorbent	19
2.4.1	Xanthation and thiourea	20
2.4.2	Base solution	24

CHAPTER 3 METHODOLOGY

3.1 Materials	26
3.2 Chemical and adsorbent collection	27
3.3 Preparation of thiourea of spent grated coconut	27
3.4 Characterization of thiourea grated coconut (TSGC)	28
3.5 Effect of pH	29

3.6 Adsorption kinetics	30
3.7 Adsorption isotherm	30
3.8 Desorption studies	31

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Characterization of the adsorbent	33
4.2 Effect of pH	38
4.3 Effect of initial heavy metal ions concentration and contact time	41
4.3.1 Adsorption kinetic study	45
4.3.1.1 Pseudo-first order kinetic model	46
4.3.1.2 Pseudo-second order kinetic model	50
4.4 Adsorption isotherm study	53
4.4.1 Langmuir isotherm model	56
4.4.2 Freundlich isotherm study	57
4.5 Desorption study	63

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion	65
5.2 Recommendation	66
CITED REFERENCES	67
CURRICULUM VITAE	74

LIST OF TABLES

Table	Caption	Page
2.1	Difference between physisorption and chemisorption	11
4.2	The uptake of Pb^{2+} , Cu^{2+} , and Ni^{2+} ions by TSGC under	41
	various pH values	
4.3(a)	Effect of the initial heavy metal ions concentration on	45
	the percentage removal	
4.3(b)	Pseudo-first order and pseudo-second order kinetic	49
	models parameters onto TSGC at different initial	
	concentration	
4.4	Adsorption isotherm model parameters for a ternary	62
	system	