UNIVERSITI TEKNOLOGI MARA

A STUDY ON CHELATING AGENTS ROLE IN THE SYNTHESIS OF CERATE – ZIRCONATE POWDER

NUR ATHIRAH ABDULLAH

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

September 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nur Athirah Abdullah
Student I.D. No.	:	2010260906
Programme	:	Master of Science (AS780)
Faculty	:	Faculty Applied Sciences
Thesis Title	:	A Study on Chelating Agents Role in the Synthesis of
		Cerate-Zircopate Powder
Signature of student	:	
Date	:	September 2014

ABSTRACT

Ceramics powder based on cerate-zirconates has a great potential application to be used as a solid electrolyte in electrochemical devices such as solid-oxide fuel cell, hydrogen sensor and steam electrolyzer. A conventional method used to prepare this type of ceramic powder is solid-state reaction (SSR) method but it needs high temperature processing to obtain high purity powders. In order to overcome this drawback, wet chemical methods (WCMs) such as sol-gel technique are widely applied in research laboratory because the method is able to produce high purity powders at lower temperature compared to SSR method. In this study, powder of BaCe_{0.54}Zr_{0.36}Y_{0.1}O_{2.95} (BCZY) was synthesized by a sol-gel process assisted with chelating agent. There are six chelating agents used; citric acid, tartaric acid, glycolic nitriloacetic acid. triethylenetetramine (TETA), acid (NTA) and ethylenediaminetetraacetic acid (EDTA) which have different electron donating groups. BCZY powder was also prepared by using a combination chelating agents of citric acid-EDTA for comparison study. The samples were dried at 325 °C and heated at various calcination temperatures. The resulting powder properties were characterized using thermogravimetric analysis (TGA), Fourier transform Infrared (FTIR) spectroscopy, X-Ray diffractometer (XRD), X-Ray Fluorescense Spectroscopy (XRF) and Energy dispersive X-Ray (EDX) spectroscopy. Thermal behaviour of dried samples was studied using TGA, and the results showed that all the samples almost completely decomposed at ≈ 1000 °C. It was found that the organic compounds released during thermal decomposition of samples increased with the increase of molecular weight of chelating agents. All the samples needed to be treated at relatively higher temperature to remove the carbonates impurities except for one prepared with TETA as proven by FTIR analysis. The sample prepared with TETA exhibits a high crystalline of BCZY powders as confirmed by XRD measurement. XRF and EDX analysis revealed that all the elements composition present in the sample is almost similar to the calculated stoichiometric ratio. As a conclusion, TETA was found to be the best chelating agent in co-operating with metal nitrate salts to produce a pure phase of BCZY powders. Therefore, a study on the role of chelating agent in this type of ceramic powder contributes significant new knowledge in synthesizing BCZY powder at relatively low temperature than SSR.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi

CHA	APTER (DNE: INTRODUCTION	1			
1.1	lonic c	Ionic conductor				
	1.1.1	Proton conductor based on cerate-zirconate ceramics	1			
1.2	Metho	d used in the synthesis of cerate-zirconate powder	3			
	1.2.1	Solid state reaction (SSR) method	4			
	1.2.2	Wet chemical methods (WCMs)	4			
1.3	Proble	m statements	7			
1.4	Object	ives of study	7			
CHA	APTER 7	FWO: LITERATURE REVIEW	9			
2.1	Solid e	electrolyte	9			
	2.1.1	Fuel cells	10			
2.2	Ceram	cs electrolyte based on perovskite structure 12				
2.3	Preparation method of cerate-zirconate powder					
	2.3.1	Important stages in sol-gel method	14			
	2.3.2	Sol-gel process	16			
	2.3.3	Modified sol-gel process	17			
2.4	Chelating agents used in synthesizing cerate-zirconate powder					
	2.4.1	Citric acid	20			
	2.4.2	D,L Tartaric acid	21			
	2.4.3	Glycolic acid	22			

	2.4.4	Nitriloacetic acid (NTA)	22		
	2.4.5	Ethylenediaamine tetraacetic acid (EDTA)	23		
	2.4.6	Triethylenetetraamine (TETA)	24		
2.5	BaCO ₃	impurity issues	25		
CHA	PTER 1	THREE: METHODOLOGY	26		
3.1	Sample	e preparation	26		
3.2	Sample	Sample characterization			
	3.2.1	Thermogravimetric Analyzer (TGA)	33		
	3.2.2	Fourier transform infrared (FTIR) spectroscopy	33		
	3.2.3	X-Ray diffractometer (XRD)	34		
	3.2.4	X-Ray Fluorescence (XRF)	34		
	3.2.5	Energy-dispersive X-ray (EDX) spectroscopy	35		
CHA	APTER I	FOUR: RESULTS AND DISCUSSIONS	36		
4.1	Effects	s of chelating agents on the sol-condition	37		
4.2	Therm	ogravimetric Analysis (TGA)	39		
	4.2.1	TG-DTG signal for the sample prepared with single	39		
		chelating agents			
	4.2.2	TG/DTG analysis for the sample prepared with combine	47		
		chelating agents			
	4.2.3	Thermal analysis for all samples	50		
4.3	Fourie	Fourier transform infrared (FTIR) analysis			
	4.3.1	FTIR analysis for sample prepared with single chelating	51		
		agents			
	4.3.2	FTIR spectra for the samples prepared with combined			
		chelating agents	58		
	4.3.3	Comparison between the single and combined chelating			
		agents	60		
4.4	X-Ray	X-Ray Diffraction (XRD) analysis			
	4.4.1	XRD analysis for single chelating agents	61		
	4.4.2	The purity of perovskite phases	63		
	4.4.3	Comparison between the best single chelating agents and			