UNIVERSITI TEKNOLOGI MARA

STRUCTURAL, THERMAL, AND MECHANICAL PROPERTIES OF PMMA/TiO₂ NANOCOMPOSITES

NIK NOOR HAFIZAH BINTI NIK MOHAMMAD

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

September 2014
AUTHOR'S DECLARATION

I declare that all the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and it is the results of my work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name : Nik Noor Hafizah Binti Nik Mohammad
ID No. : 2010100473
Programme : Master of Science
Faculty : Faculty of Applied Sciences
Thesis Title : Structural, Thermal, and Mechanical Properties of PMMA/TiO₂ Nanocomposites
Signature :
Date : September 2014
ABSTRACT

Polymer nanocomposite is a new choice to conventionally filled polymers. Because of the nanometer sizes of filler, filler dispersion in this nanocomposite demonstrates markedly enhanced properties compared to pure polymers include an increased in their modulus and strength, thermal and mechanical properties. In this study, there are two stages involve in preparation the PMMA/TiO₂ nanocomposites. First is the synthesis of TiO₂ nanopowder using sol gel and milling method. The structural properties of TiO₂ synthesized at 0.4 molar precursor concentration with the 6 hour milling time and 4 grams milling amount of TiO₂ in the milling process were measured using Field Emission Scanning Electron Microscopy (FE-SEM), X-Ray Diffraction (XRD), Raman Spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS) and FTIR. TiO₂ produced were confirmed with XRD and Raman Spectroscopy with an anatase structure produced with only anatase phase was observed. Furthermore, EDS results shows that the element of titanium and oxygen detected in the sample and FTIR analysis also shows the bonding of Ti-O-Ti was observed from the sample. In the second stage, an optimized TiO₂ nanopowder were mixed with PMMA to produce PMMA/TiO₂ nanocomposites. This polymer nanocomposites was prepared by mixing TiO₂ nanofiller into polymer PMMA matrix using sonication and solution casting technique. The structural, thermal and mechanical properties of PMMA/TiO₂ nanocomposites were investigated. The structural properties of PMMA/TiO₂ nanocomposites showing an increase of TiO₂ amount in PMMA produce an increase many cracks on the sample surface observed by FESEM. Meanwhile, for the thermal properties, T_g increase when TiO₂ filler is added into PMMA. The thermal degradation of the nanocomposite also increases when amount of TiO₂ increased. Further, mechanical properties of nanocomposite also show the modulus increased with TiO₂ amount, up to 15 wt% TiO₂ in PMMA. The 15 wt% TiO₂ nanopowder in PMMA is the optimized one due to high modulus obtained. When the amount of TiO₂ nanopowder is higher than 15 wt%, modulus of the sample drop drastically due to the brittle properties of the nanocomposited samples observed. Higher amounts of TiO₂ in PMMA increase an intercalation of TiO₂ between the polymer chains, thus, weaken the polymer. Effect of TiO₂ nanoparticle filler size also was investigated. Smaller size of the filler shows higher thermal and mechanical properties of the nanocomposite. Good thermal and mechanical properties of PMMA/TiO₂ nanocomposites contribute to the various applications for this nanocomposite applications such as in household applications, electronic, aerospace and also in biotechnology applications.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Nanotechnology nowadays | 1 |
1.2 Polymer nanocomposites – Improve the thermal and mechanical properties of the polymer | 3 |
1.3 Problem statement | 5 |
1.4 Objectives | 5 |
1.5 Scope of the thesis | 6 |
1.6 Contribution of the research | 7 |
1.7 Thesis organization | 7 |

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction | 9 |
2.2 Synthesis of titanium dioxide by sol gel method | 10 |
2.3 Properties of titanium dioxide | 14 |
2.4 Properties of poly(methyl methacrylate) | 16 |
2.5 Preparation of PMMA/TiO₂ nanocomposites by solution casting method | 17 |
2.6 Mechanical and thermal properties of PMMA/TiO₂ nanocomposites | 18 |

CHAPTER THREE: METHODOLOGY

3.1 Introduction | 20 |
3.2 Introduction to the sample preparation

3.3 Synthesis of TiO$_2$ nanopowder

3.3.1 Synthesis of TiO$_2$ nanopowder at different TiO$_2$ precursor concentration

3.3.2 Synthesis of TiO$_2$ nanopowder at different milling time in the milling process

3.3.3 Synthesis of TiO$_2$ nanopowder at different milling amount in the milling process

3.4 Preparation of PMMA/TiO$_2$ nanocomposites

3.4.1 Preparation of PMMA/TiO$_2$ nanocomposites with different TiO$_2$ weight percent

3.4.2 Preparation of PMMA/TiO$_2$ nanocomposites at different types of TiO$_2$ nanopowder

3.5 Characterization method

3.5.1 Structural properties
 i. X-Ray Diffraction (XRD)
 ii. Raman spectroscopy
 iii. Field Effect Scanning Electron Microscopy (FE-SEM)
 iv. Energy Dispersive X-ray Spectroscopy (EDS)
 v. Fourier Transforms Infrared Spectroscopy (FTIR)

3.5.2 Thermal properties
 i. Thermogravimetric Analysis (TGA)
 ii. Different Scanning Calorimetry (DSC)

3.5.3 Mechanical Properties
 i. Dynamic Mechanical Thermal Analysis (DMTA)

CHAPTER FOUR: STRUCTURAL PROPERTIES OF TITANIUM DIOXIDE NANOPowDER

4.1 Introduction

4.2 Structural properties of synthesized TiO$_2$ nanopowder at different TiO$_2$ precursor concentration