OPTIMIZATION PLANTED AREA FOR MAXIMIZE PRODUCTION OF PALM FRUIT IN FELCRA SEBERANG PERAK USING GOAL PROGRAMMING MODEL

NUR ATIKAH BT NADZRI

BACHELOR OF SCIENCE (Hons.) MANAGEMENT MATHEMATICS

NOVEMBER 2018

Universiti Teknologi MARA

Optimization Planted Area for Maximize Production of Palm Fruit in FELCRA Seberang Perak using Goal Programming Model
STUDENT'S DECLARATION

I certify that this report and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

..

NUR ATIKAH BT NADZRI
2016694768

NOVEMBER 30, 2018
ABSTRACT

After Indonesia, Malaysia is the second largest palm oil production. One of the famous agencies in agriculture sector of palm is Federal Land Consolidation and Rehabilitation (FELCRA). However, the palm fruit production in FELCRA was decreasing. Therefore in this study is focused on finding the optimal land area in FELCRA Seberang Perak. In FELCRA Seberang Perak, it has four palm planted areas. Palm is the major contributor in FELCRA Seberang Perak. In this research, goal programming model is used in finding the optimal palm planted area. There are three goals that are considered in this research which are to maximize each planted area, maximize the number of palm tree and to maximize the palm fruit production. Based on the result of analysis, the optimal planted area for four areas in FELCRA Seberang Perak is 5662.80 hectares. For the area in FSP 10&11 the planted area is 1121.48 hectare, FSP 12 1224.80 hectare, FSP 13 1135 hectares and FSP 14&15 2181.52 hectares. Hence, the number of palm trees is 845829 and the palm fruit production is 224120.20 tonnes in year. The result of this study is analyzed by using QM for Window version 5.3.
TABLE OF CONTENTS

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR’S APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background of the Study | 1 |
1.2 Problem Statement | 3 |
1.3 Objective of the Study | 4 |
1.4 Scope of the Study | 5 |
1.5 Significance of the Study | 5 |

CHAPTER TWO: LITERATURE REVIEW

2.1 Goal Programming | 6 |
2.2 Optimizing Land Area | 9 |
2.3 Application of Goal Programming in Agriculture | 11 |
2.4 Summary | 13 |
CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Introduction 14
3.2 Data Collection 15
3.3 Goal Programming Model Formulation 15
 3.3.1 Goals and Constraints 15
 3.3.2 The Objective Function 18
 3.3.3 Deviational Variables 19
3.4 Complete Goal Programming Model 19
3.5 Summary 21

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1 Data Analysis 22
4.2 Summarization of Results Output 23
4.3 Comparison between Target and Results Obtained using QM for Window 26
4.4 Summary 27

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions 28
5.2 Recommendations 29

REFERENCES 30

APPENDICES

APPENDIX A: QM for Window 32