GREEN SYNTHESIS OF SILVER NANOPARTICLES (AgNPs) AND ITS APPLICATION FOR PHOTOCATALYTIC ACTIVATION OF METHYLENE BLUE

NUR DIYANA SYAZWANI BINTI ZAMBRI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled "Green synthesis of silver nanoparticles (AgNPs) and its application for photcatalytic activation of methylene blue" was submitted by Nur Diyana Syazwani binti Zambri, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Nurul Huda bint Abdul Halim Supervisor Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan Mazni binti Masa
Head of Programme
School of Chemistry and
Environment
Faculty of Applied Sciences
Universiti Teknologi MARA
Kuala Pilah Campus
72000 Kuala Pilah
Negeri Sembilan

Date:			

TABLE OF CONTENTS

		Page iii			
	ACKNOWLEDGEMENT				
	BLE OF CONTENTS	iv			
	T OF TABLES	vi			
	T OF FIGURES	vii			
	OT OF ABBREVIATIONS	ix			
	STRACT	X			
AB	STRAK	xi			
СН	APTER 1 INTRODUCTION				
1.1	Background Study	1			
1.2	Problem Statement	4			
1.3	Significance of the Study	6			
1.4	Objectives of the Study	6			
СН	APTER 2 LITERATURE REVIEW				
2.1	Nanosciences and nanotechnologies	7			
2.2	Silver Nanoparticles (AgNPs)	8			
2.3	Azadirachta Indica Leaves Extract	10			
2.4	Green Synthesis of Silver Nanoparticles	12			
2.5	Characterization Method	14			
	2.5.1 Functional Groups Characterization	14			
	2.5.2 Particle Size Characterization	15			
2.6	Application of Silver Nanoparticles as Photocatalyst	16			
2.7	Mechanism of Silver in Photocatalytic Degradation Process	18			
CH.	APTER 3 METHODOLOGY				
3.1	Raw Materials and Chemicals	17			
3.2	Apparatus	17			
3.3	Preparation Methods	17			
	3.3.1 Preparation of <i>Azadirachta indica</i> Aqueous Leaf Extract	17			
	3.3.2 The Effect of Leaf Extract Volume with Reaction Time on Formation of AgNPs	21			
	3.3.3 The Effect of Silver Nitrate Concentration with Reaction Time on Formation of AgNPs	21			
	3.3.4 Photocatalytic Measurement	22			
3.4	Characterization of Silver Nanoparticles	23			

CHA	APTER 4 RESULTS ANI	D DISCUSSION	
4.1	Introduction		25
4.2	Macroscopic Observation		26
4.3	•	ectrum of Azadirachta Indica Leaf Extract	28
4.4		ectra of AgNPs	31
		f Exract Volume Used with Reaction	31
	4.4.2 The Effect of Silve Reaction Time	er Nitrate Concentration Used with	34
4.5	The Study of Scanning Ele Spectroscopy (SEM-EDX	ectron Microscopy-Energy Dispersive	37
4.6	The Study of Photocatalyt Methylene Blue	tic Activation of Degradation on	41
	4.6.1 Photocatalytic Act	tivation Using Sunlight as a Source	41
	4.6.2 Photocatalytic Act	tivation Using UV-A Lamp as a Source	43
CHA	APTER 5 CONCLUSION	N AND RECOMMENDATIONS	44
APP	ED REFERENCES PENDICES RRICULUM VITAE		46 50 53

ABSTRACT

GREEN SYNTHESIS OF SILVER NANOPARTICLES (AgNPs) AND ITS APPLICATION FOR PHOTOCATALYTIC ACTIVATION OF METHYLENE BLUE

The silver nanoparticles (AgNPs) were successfully synthesized by green route method using aqueous extract of Azadirachta Indica and silver nitrate solution. The effect of various parameters which are extracted volume of Azadirachta Indica leaf extract with reaction time and concentration of silver nitrate with reaction time were studied. It was found that hydroxyl and carboxylate groups of the aqueous leaf extract play major role for the formation of AgNPs through infrared spectra analysis. The most suitable extracted volume and silver nitrate concentration for formation of AgNPs were found to be at 3 mL and 1 mM respectively through UV-Vis analysis. Besides, the shape were mostly spherical and oval in shape. The size diameter range were noted from 30 to 80 nm with the average diameter of selected area in the SEM image was 70 nm. The strong signal and the sharp peak of silver atom in the EDX analysis also gives a clear indication of the presence of elemental silver in the sample with the weight percentage of 56.12 %. This study also revealed that the silver nanoparticles can be an excellent photocatalyst on reduction of methylene blue dye which was confirmed by the gradual decrease of maximum absorbance values at 664 nm when exposed to direct sunlight compared UV-A lamp irradiation that shows slower rate of degradation as recorded by UV-Vis spectrum.