SPECTROPHOTOMETRIC METHOD FOR HYDROQUINONE DETERMINATION IN SKIN WHITENING PRODUCTS

NUR FAREHAH BINTI AZHAR

Final Year Project Report Submitted In
Partial Fullfillment of the Requirement for The
Bachelor of Science (Hons.) Chemistry
Faculty of Applied Science
Universiti Teknologi Mara

JANUARY 2019
ABSTRACT

SPECTROPHOTOMETRIC METHOD FOR HYDROQUINONE DETERMINATION IN SKIN WHITENING PRODUCTS

Hydroquinone is a phenolic aromatic organic compound with the chemical formula of C₆H₄(OH)₂. Hydroquinone is commonly used as a skin whitening agent in cosmetic products. It has the ability to make the skin appear fairer. Hence, the amount of hydroquinone in cosmetic products must be analyzed. The presence of hydroquinone that exceeds the permitted level of 2% in cosmetic products is toxic for humans. Therefore, a sensitive, accurate, simple, rapid and low cost analytical method is required for the determination of hydroquinone. The spectrophotometric method has been proposed for the quantitative analysis of hydroquinone. The calibration curve was linear from 2 mg L⁻¹ to 12 mg L⁻¹ of hydroquinone with a regression coefficient (R²) of 0.9999. The limit of detection (LOD) obtained was 0.25 mg L⁻¹. The precisions in terms of relative standard deviation (RSD) were 4.44%, 2.22% and 0.00% for 2 mg L⁻¹ hydroquinone in consecutive three days. Meanwhile, the RSD were 0.86%, 2.52% and 1.71% for 5 mg L⁻¹. Lastly, for concentration of 8 mg L⁻¹ the RSD were 0.00%, 1.05% and 0.53%. The range of recovery achieved for 2 and 4 mg L⁻¹ of hydroquinone standard solution in the skin whitening product were 99.18% and 94.25% respectively. The all tested skin whitening products contain hydroquinone below 2% except for one product which is Collagen Plus (night cream) that slightly exceed the limit with 2.06%. So, it can be concluded that this proposed method is accurate, simple, fast, low cost and has a potential to be an alternative method for routine analysis of hydroquinone in cosmetic samples.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vi
LIST OF ABBREVIATIONS vii
LIST OF SYMBOLS ix
ABSTRACT xi
ABSTRAK xii

CHAPTER 1 INTRODUCTION
1.1 Overview
1.1.1 Cosmetics 1
1.1.2 Cosmetic Industry 2
1.1.3 Skin Whitening Products 3
1.1.4 Melanin and Skin Color 3
1.2 Problem Statement 4
1.3 Significant of Study 5
1.4 Objectives of Study 5

CHAPTER 2 LITERATURE REVIEW
2.1 Skin Whitening Agents 6
2.1.1 Hydroquinone 7
2.1.2 Formation Process of Hydroquinone 8
2.1.3 Toxicity of Hydroquinone 9
2.1.4 Adverse Effects of Hydroquinone 9
2.2 Analytical Methods for Determination of Hydroquinone 10
2.2.1 Chromatographic Determination of Hydroquinone in Cosmetic 10
2.2.2 Voltammetric Determination of Hydroquinone in Cosmetic 13
2.3 Spectrophotometric Determination of Hydroquinone in Cosmetic 16

CHAPTER 3 MATERIALS AND METHOD
3.1 Instrumentation, Materials and Reagents 20
3.1.1 Instrumentations 20
3.1.2 Equipment and Apparatus 21
3.1.3 Chemical and Reagents 21
3.2 Reagent and Chemical Preparation 22
3.2.1 Reagents 22
3.2.2 Preparation of 0.05 M Sulfuric Acid 22
3.2.3 Hydroquinone Stock Solution 22
3.2.4 Hydroquinone Standard Solution 23

3.3 Analytical Technique 23
 3.3.1 Method Validation 23
 3.3.1.1 Linearity 23
 3.3.1.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) 24
 3.3.1.3 Precision and Repeatability 24
 3.3.1.4 Accuracy 24
 3.3.1.5 Ruggedness 25
 3.3.1.6 Robustness 25

3.4 Skin Whitening Product Analysis 26
 3.4.1 Collection and Preservation of Skin Whitening Product 26
 3.4.2 Pre-treatment of Skin Whitening Products 27
 3.4.3 Recovery of Hydroquinone Analysis In Skin Whitening Products 27
 3.4.4 Percentage of Hydroquinone Content in Skin Whitening Products 28

CHAPTER 4 RESULTS AND DISCUSSION 29
 4.1 Spectrophotometric Study of Hydroquinone 29
 4.2 Estimation of Maximum Absorption (A_max) of Hydroquinone 29
 4.3 Calibration Curve of Hydroquinone and Validation of the Proposed Spectrophotometric Technique 30
 4.3.1 Calibration Curve of Hydroquinone 31
 4.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) 33
 4.4 Validation of the Proposed Spectrophotometric Technique 34
 4.4.1 Precision and Repeatability 34
 4.4.2 Accuracy 35
 4.4.3 Ruggedness 38
 4.4.4 Robustness 40
 4.5 Recovery Studies of Hydroquinone in Skin Whitening Product 43
 4.6 Analysis of Hydroquinone in Skin Whitening Product by the Proposed Spectrophotometric Technique 44

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 47
 5.1 Conclusion 47
 5.2 Recommendations 49

CITED REFERENCES 50
APPENDICES 57
CURRICULUM VITAE 68
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Lists of skin whitening products purchased</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>The λ_{max} obtained from present study and previous studies by another researchers</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>The regression equation and R^2 value obtained from present and previous studies</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>LOD and LOQ obtained from the present and previous studies</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Absorbance obtained from intra-day and inter-day precision measurement of hydroquinone standard solution by the proposed spectrophotometric technique</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean values for recovery of hydroquinone standard solution by the proposed spectrophotometric technique</td>
<td>37</td>
</tr>
<tr>
<td>4.6</td>
<td>Ruggedness result for 2 mg L$^{-1}$, 5 mg L$^{-1}$ and 8 mg L$^{-1}$ of hydroquinone standard solution by two different analysts using the same analyser (n=3)</td>
<td>39</td>
</tr>
<tr>
<td>4.7</td>
<td>Robustness result for 2 mg L$^{-1}$, 5 mg L$^{-1}$ and 8 mg L$^{-1}$ of hydroquinone standard solution (n=3) for variation in maximum wavelength, λ_{max}</td>
<td>41</td>
</tr>
<tr>
<td>4.8</td>
<td>Robustness result for 2 mg L$^{-1}$, 5 mg L$^{-1}$ and 8 mg L$^{-1}$ of hydroquinone standard solution (n=3) for variation time interval after standard preparation.</td>
<td>42</td>
</tr>
<tr>
<td>4.9</td>
<td>Recovery for hydroquinone standard solution in cosmetic sample (n=3)</td>
<td>44</td>
</tr>
<tr>
<td>4.10</td>
<td>Result for the analysis of hydroquinone in skin whitening cosmetics by the proposed method (n=3)</td>
<td>45</td>
</tr>
</tbody>
</table>